98%
921
2 minutes
20
Surgical repair of groin protrusions is one of the most frequently performed procedures. Currently, open or laparoscopic repair of inguinal hernias with flat meshes deployed over the hernial defect is considered the gold standard. However, fixation of the implant, poor quality biologic response to meshes and defective management of the defect represent sources of continuous debates. To overcome these issues, a different treatment concept has recently been proposed. It is based on a 3D scaffold named ProFlor, a flower shaped multilamellar device compressible on all planes. This 3D device is introduced into the hernial opening and, thanks to its inherent centrifugal expansion, permanently obliterates the defect in fixation-free fashion. While being made of the same polypropylene material as conventional hernia implants, the 3D design of ProFlor confers a proprietary dynamic responsivity, which unlike the foreign body reaction of flat/static meshes, promotes a true regenerative response. A long series of scientific evidence confirms that, moving in compliance with the physiologic cyclical load of the groin, ProFlor attracts tissue growth factors inducing the development of newly formed muscular, vascular and nervous structures, thus re-establishing the inguinal barrier formerly wasted by hernia disease. The development up to complete maturation of these highly specialized tissue elements was followed thanks to biopsies excised from ProFlor from the short-term up to years post implantation. Immunohistochemistry made it possible to document the concurrence of specific growth factors in the regenerative phenomena. The results achieved with ProFlor likely demonstrate that modifying the two-dimensional design of hernia meshes into a 3D outline and arranging the device to respond to kinetic stresses turns a conventional regressive foreign body response into advanced probiotic tissue regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045722 | PMC |
http://dx.doi.org/10.3390/biology12030434 | DOI Listing |
Vet Res Commun
September 2025
Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Global warming causes heat stress in livestock, impairing their health, welfare, and productivity. In bovines, chronic stress elevates cortisol levels; however, this response often goes undetected due to the lack of practical biomatrices for accurate assessment. Common biomatrices such as blood require repeated sampling that may affect measurement accuracy.
View Article and Find Full Text PDFImmun Inflamm Dis
September 2025
School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
Aim: Autoimmune diseases, characterized by the immune system mistakenly attacking the body's own tissues, are a growing global concern, with increasing prevalence. The circadian clock is a fundamental regulator of physiological processes, critically modulating immune functions. This review explores the intricate connections between circadian rhythms and immune responses in autoimmune pathogenesis and how disruptions exacerbate disease.
View Article and Find Full Text PDFPLoS Biol
September 2025
The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China.
Neuropeptide SIFamide (SIFa) neurons in Drosophila melanogaster have been characterized by their exceptionally elaborate arborization patterns, which extend from the brain into the ventral nerve cord (VNC). SIFa neurons are equipped to receive signals that integrate both internal physiological cues and external environmental stimuli. These signals enable the neurons to regulate energy balance, sleep patterns, metabolic status, and circadian timing.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Cantabria 39011, Spain.
Circadian clocks allow organisms to anticipate daily fluctuations in light and temperature, but how this anticipatory role promotes adaptation to different environments remains poorly understood. Here, we subjected the cyanobacterium PCC 7942 to a long-term evolution experiment under high light, high temperature, and elevated CO levels. After 1,200 generations, we obtained a strain exhibiting a 600% increase in growth rate.
View Article and Find Full Text PDFBiogerontology
September 2025
Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 70800, Ostrava-Poruba, Czech Republic.
The circadian rhythm is a key biological mechanism that aligns organisms' physiological processes with Earth's 24-h light-dark cycle, crucial for cellular and tissue homeostasis. Disruption of this system is linked to accelerated aging and age-related diseases. Central to circadian regulation is the CLOCK protein, which controls gene transcription related to tissue homeostasis, cellular senescence, and DNA repair.
View Article and Find Full Text PDF