Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background/aim: Nuclear respiratory factor 1 (NRF1) is a key mediator of genes involved in mitochondrial biogenesis and the respiratory chain; however, its role in bladder cancer remains unknown. Transitional cell carcinoma, also known as urothelial cell carcinoma, is the most common type of bladder cancer resistant to chemotherapy. An established high-grade and invasive transitional cell carcinoma line from patients with urinary bladder cancer, known as T24, has been extensively used in cancer research. In this study, we aimed to investigate the mechanisms through which NRF1 regulates proliferation and cell migration of bladder cancer cells using the T24 cell line.

Materials And Methods: Cells were transfected with plasmid cloning DNA for NRF1 to evaluate the effect of NRF1 overexpression on bladder cancer cells. Western blot was used to examine epithelial and mesenchymal markers (E-cadherin and α-smooth muscle actin), transcriptional regulators for epithelial-mesenchymal transition (snail family transcriptional repressors), components of transforming growth factor-β1/SMADs signaling, high-mobility group box 1 (HMGB1), and receptor for advanced glycation end-products (RAGE). The in situ expression of E-cadherin, α-smooth muscle actin and SMAD7 was determined using immunofluorescence staining. Cell migration capacity was assessed by wound-healing assay.

Results: Transfection with NRF1 expression vector repressed the migration capacity of bladder cancer cells, diminishing HMGB1/RAGE expression and reducing transforming growth factor β-associated epithelial-mesenchymal transition in T24 cells.

Conclusion: Therapeutic avenues that increase NRF1 expression may serve as an adjunct to conventional treatments for bladder cancer.

Download full-text PDF

Source
http://dx.doi.org/10.21873/anticanres.16301DOI Listing

Publication Analysis

Top Keywords

bladder cancer
32
cancer cells
16
cell carcinoma
12
cancer
9
nuclear respiratory
8
respiratory factor
8
bladder
8
transitional cell
8
cell migration
8
e-cadherin α-smooth
8

Similar Publications

Background: Rhabdomyosarcoma (RMS) typically responds well to a combination of treatments with favorable prognosis in children 1 to 9 years old. However, infants may fare worse due to receiving less aggressive local therapy for concerns about long-term effects of surgery/radiation. This study investigates the clinical characteristics, treatment approach, and survival outcomes of RMS in children under 2.

View Article and Find Full Text PDF

Long-term complications in patients with bladder-prostate rhabdomyosarcoma treated with brachytherapy: a systematic review.

Pediatr Surg Int

September 2025

Pediatric Surgery Unit, Department of Women's and Children's Health, University of Padua, Via Nicolò Giustiniani, 35100, Padua, Italy.

Introduction: Brachytherapy has been used for the multimodal treatment of pediatric bladder-prostate rhabdomyosarcoma in the last two decades. The aim of this systematic review is to gather the current evidence about this innovative technique with a special focus on long-term outcomes.

Methods: According to PRISMA criteria, PubMed, Scopus, and Web of Science were searched for papers published between 2000 and 2022.

View Article and Find Full Text PDF

Background: High-dose-rate (HDR) brachytherapy is essential in the treatment of locally advanced cervical cancer. While Iridium-192 (Ir-192) is commonly used, its short half-life imposes logistical and financial constraints, particularly in low- and middle-income countries (LMICs). Cobalt-60 (Co-60), with a longer half-life and lower operational costs, is a viable alternative.

View Article and Find Full Text PDF