Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Photon-counting detector computed tomography (PCD-CT) has the potential to provide superior image quality compared to energy-integrating detector computed tomography (EID-CT). We compared the two systems for elbow imaging in off-center arm positioning, 90° flexion, and cast fixation in a simulated post-trauma setting.
Methods: The institutional review board approved the study protocol. In a cadaver study, an olecranon fracture was artificially created in ten whole arm specimens. Two different scanning positions were evaluated: (a) arm overhead; and (b) arm on top of the abdomen of a whole-body phantom. The ultra-high resolution mode with three dose protocols and two reconstruction kernels was applied. Two blinded radiologists independently evaluated fracture and trabecular bone delineation. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and cortical sharpness measurements were performed. Cohen κ correlations, Mann-Whitney U and Wilcoxon signed rank tests were used. A p value lower than 0.05 was considered statistically significant.
Results: Dose-equivalent PCD-CT scans were rated better for fracture and trabecular bone evaluation (p < 0.001). SNR, CNR, and cortical sharpness were higher for all diagnostic (Br76) PCD-CT images (p < 0.001). The arm position had less effect on image quality in the PCD-CT compared to the EID-CT. The use of a sharp bone kernel (Br89) improved image quality ratings for PCD-CT. In the low-dose scan mode, PCD-CT resulted in more diagnostic scans (75%) compared to EID-CT (19%).
Conclusions: PCD-CT provided superior objective and subjective image quality for fracture and trabecular bone structures delineation of the elbow compared to EID-CT in a typical post-trauma setting.
Key Points: • Photon-counting detector computed tomography (PCD-CT) preserved high image quality in elbow imaging with off-center positions. • PCD-CT was advantageous for bone evaluation in trauma elbows. • PCD-CT ultra-high-resolution mode and very sharp reconstruction kernels facilitated higher image quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10040392 | PMC |
http://dx.doi.org/10.1186/s41747-023-00329-w | DOI Listing |