A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Real world external validation of metabolic gestational age assessment in Kenya. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Using data from Ontario Canada, we previously developed machine learning-based algorithms incorporating newborn screening metabolites to estimate gestational age (GA). The objective of this study was to evaluate the use of these algorithms in a population of infants born in Siaya county, Kenya. Cord and heel prick samples were collected from newborns in Kenya and metabolic analysis was carried out by Newborn Screening Ontario in Ottawa, Canada. Postnatal GA estimation models were developed with data from Ontario with multivariable linear regression using ELASTIC NET regularization. Model performance was evaluated by applying the models to the data collected from Kenya and comparing model-derived estimates of GA to reference estimates from early pregnancy ultrasound. Heel prick samples were collected from 1,039 newborns from Kenya. Of these, 8.9% were born preterm and 8.5% were small for GA. Cord blood samples were also collected from 1,012 newborns. In data from heel prick samples, our best-performing model estimated GA within 9.5 days overall of reference GA [mean absolute error (MAE) 1.35 (95% CI 1.27, 1.43)]. In preterm infants and those small for GA, MAE was 2.62 (2.28, 2.99) and 1.81 (1.57, 2.07) weeks, respectively. In data from cord blood, model accuracy slightly decreased overall (MAE 1.44 (95% CI 1.36, 1.53)). Accuracy was not impacted by maternal HIV status and improved when the dating ultrasound occurred between 9 and 13 weeks of gestation, in both heel prick and cord blood data (overall MAE 1.04 (95% CI 0.87, 1.22) and 1.08 (95% CI 0.90, 1.27), respectively). The accuracy of metabolic model based GA estimates in the Kenya cohort was lower compared to our previously published validation studies, however inconsistency in the timing of reference dating ultrasounds appears to have been a contributing factor to diminished model performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10021775PMC
http://dx.doi.org/10.1371/journal.pgph.0000652DOI Listing

Publication Analysis

Top Keywords

heel prick
16
prick samples
12
samples collected
12
cord blood
12
gestational age
8
data ontario
8
newborn screening
8
newborns kenya
8
model performance
8
kenya
6

Similar Publications