Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pesticide residues in soils can cause negative impacts on soil health as well as soil biota. However, research related to the toxicity and exposure risks of pesticides to soil biota are scarce, especially in the North China Plain (NCP) where pesticides are intensively applied. In this study, the occurrence and distribution of 15 commonly used pesticides in 41 fields in Quzhou county in the NCP were determined during the growing season in 2020. The ecological risks of pesticides to the soil biota, including earthworms, enchytraeids, springtails, mites and nitrogen mineralization microorganisms, were assessed using toxicity exposure ratios (TERs) and risk quotient (RQ) methods. Based on pesticide detection rates and RQs, pesticide hazards were ranked using the Hasse diagram. The results showed that pesticides were concentrated in the 0-2 cm soil depth. Chlorantraniliprole was the most frequently detected pesticide with a detection rate of 37%, while the highest concentration of 1.85 mg kg was found for carbendazim in apple orchards. Chlorpyrifos, carbendazim and imidacloprid posed a chronic exposure risk to E. fetida, F. candida and E. crypticus with the TERs exceeding the trigger value. Pesticide mixtures posed ecological risks to soil biota in 70% of the investigated sites. 47.5% of samples were ranked as high-risk, with the maximum RQ exceeding 490. According to the Hasse diagram, abamectin, tebuconazole, chlorantraniliprole and chlorpyrifos were ranked as the most hazardous pesticides for soil biota in the study region, indicating that alternative methods of pest management need to be considered. Therefore, practical risk mitigation solutions are recommended, in which the use of hazardous pesticides would be replaced with low-risk pesticides with similar functions from the Hasse diagram, or with biopesticides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.138428DOI Listing

Publication Analysis

Top Keywords

soil biota
24
pesticides soil
16
hasse diagram
12
pesticides
9
soil
8
toxicity exposure
8
risks pesticides
8
ecological risks
8
pesticide detection
8
hazardous pesticides
8

Similar Publications

Influence of Plant Species and De-Icing Salt on Microbial Communities in Bioretention.

Environ Microbiol Rep

October 2025

École d'urbanisme et d'architecture de paysage, Faculté de l'aménagement, Université de Montréal, Montréal, Québec, Canada.

Bioretention (BR) systems are green infrastructures used to manage runoff even in cold climates. Bacteria and fungi play a role in BR's performance. This mesocosm study investigated the influence of plant species and de-icing salt on the diversity, the community composition, and the differential abundance of bacteria and fungi in BR.

View Article and Find Full Text PDF

Mortierella alpina bioinoculant potentiates native microbiota for soil borne disease suppression in Panax notoginseng cultivation.

Pestic Biochem Physiol

November 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China. Electronic ad

Mortierella spp. is emerging as a potential biocontrol agent against soil borne diseases due to its antagonistic effects on pathogens and strong environmental adaptability. However, the mechanisms by which it restructures rhizosphere microbial communities to achieve sustained pathogen suppression remain largely unresolved.

View Article and Find Full Text PDF

Efficient degradation mechanism of fomesafen by earthworms and gut degrading bacteria synthetic community.

Pestic Biochem Physiol

November 2025

College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China. Electronic address:

Fomesafen (FSA), a diphenyl ether herbicide, causes toxicity to non-target organisms and subsequent crops. Vermi-remediation is advocated as an effective remediation method, but there has been no research on the isolation and mechanism of FSA-degradation strains from earthworm gut. In this study, three ecotypes of earthworms- Eisenia foetida (epigeic), Metaphire guillelmi (anecic), and Aporrectodea caliginosa (endogenic), were used to investigate the degradation mechanism of FSA in soil-plant-earthworm systems for the first time.

View Article and Find Full Text PDF

Foliar application of selenium nanoparticles enhance quality and mitigate negative plant-soil feedback in Panax notoginseng by modulating plant-microbiota interactions.

Pestic Biochem Physiol

November 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China; China France

Developing a practical strategy to enhance the quality of medicinal herb while alleviating negative plant-soil feedback (NPSF) is critical for agriculture. In this study, we investigated the effects of selenium nanoparticles (SeNPs) on Panax notoginseng through a two-year field experiment. Four treatments were established: a control (SeNPs_0) and three SeNPs concentrations (3, 5, and 10 mg/L), which were foliar-sprayed every 15 days for a total of six applications.

View Article and Find Full Text PDF

Multi-component tree biomass approach to estimate litterfall Hg deposition in a warm-temperate coniferous forest in southern Europe.

Environ Res

September 2025

Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias,32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, 32004 Ourense, Spain. Electronic address: edjuanca@uv

Terrestrial ecosystems are a key component in the biogeochemical cycle of Hg. About 50% of atmospheric Hg is captured in the system because of the ability of vegetation to retain and subsequently transfer it to the soil surface through litterfall. In a stand dominated by Scots pine (Pinus sylvestris), the widest spatially distributed tree species in the northern hemisphere and the second worldwide, this two-year study evaluated monthly the litterfall Hg deposition fluxes (FHg) through all litterfall fractions involved (needles, twigs, bark, miscellaneous, and male inflorescences).

View Article and Find Full Text PDF