98%
921
2 minutes
20
Neuroscience has long been an essential driver of progress in artificial intelligence (AI). We propose that to accelerate progress in AI, we must invest in fundamental research in NeuroAI. A core component of this is the embodied Turing test, which challenges AI animal models to interact with the sensorimotor world at skill levels akin to their living counterparts. The embodied Turing test shifts the focus from those capabilities like game playing and language that are especially well-developed or uniquely human to those capabilities - inherited from over 500 million years of evolution - that are shared with all animals. Building models that can pass the embodied Turing test will provide a roadmap for the next generation of AI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033876 | PMC |
http://dx.doi.org/10.1038/s41467-023-37180-x | DOI Listing |
Nat Mach Intell
March 2025
University of Edinburgh, Edinburgh, UK.
Completing complex tasks in unpredictable settings challenges robotic systems, requiring a step change in machine intelligence. Sensorimotor abilities are considered integral to human intelligence. Thus, biologically inspired machine intelligence might usefully combine artificial intelligence with robotic sensorimotor capabilities.
View Article and Find Full Text PDFStud Hist Philos Sci
August 2024
Philosophy of Computing Group, Faculty of Administration and Social Sciences, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland.
We inquire into the role of Turing's biological thought in the development of his concept of intelligent machinery. We trace the possible relations between his proto-connectionist notion of 'organising' machines in Turing (1948) on the one hand and his mathematical theory of morphogenesis in developmental biology (1952) on the other. These works were concerned with distinct fields of inquiry and followed distinct paradigms of biological theory, respectively postulating analogues of Darwinian selection in learning and mathematical laws of form in organic pattern formation.
View Article and Find Full Text PDFNat Commun
March 2023
Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
Neuroscience has long been an essential driver of progress in artificial intelligence (AI). We propose that to accelerate progress in AI, we must invest in fundamental research in NeuroAI. A core component of this is the embodied Turing test, which challenges AI animal models to interact with the sensorimotor world at skill levels akin to their living counterparts.
View Article and Find Full Text PDFCommun Biol
November 2022
Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.
Antibodies against the carboxy-terminal section of the membrane-proximal external region (C-MPER) of the HIV-1 envelope glycoprotein (Env) are considered as nearly pan-neutralizing. Development of vaccines capable of producing analogous broadly neutralizing antibodies requires deep understanding of the mechanism that underlies C-MPER recognition in membranes. Here, we use the archetypic 10E8 antibody and a variety of biophysical techniques including single-molecule approaches to study the molecular recognition of C-MPER in membrane mimetics.
View Article and Find Full Text PDFAI Soc
September 2022
Oxford Internet Institute, University of Oxford, 1 St Giles', Oxford, OX1 3JS UK.
This paper considers a host of definitions and labels attached to the concept of smart cities to identify four dimensions that ground a review of ethical concerns emerging from the current debate. These are: (1) network infrastructure, with the corresponding concerns of control, surveillance, and data privacy and ownership; (2) post-political governance, embodied in the tensions between public and private decision-making and cities as post-political entities; (3) social inclusion, expressed in the aspects of citizen participation and inclusion, and inequality and discrimination; and (4) sustainability, with a specific focus on the environment as an element to protect but also as a strategic element for the future. Given the persisting disagreements around the definition of a smart city, the article identifies in these four dimensions a more stable reference framework within which ethical concerns can be clustered and discussed.
View Article and Find Full Text PDF