A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

CT texture analysis reliability in pulmonary lesions: the influence of 3D vs. 2D lesion segmentation and volume definition by a Hounsfield-unit threshold. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Reproducibility problems are a known limitation of radiomics. The segmentation of the target lesion plays a critical role in texture analysis variability. This study's aim was to compare the interobserver reliability of manual 2D vs. 3D lung lesion segmentation with and without pre-definition of the volume using a threshold of - 50 HU.

Methods: Seventy-five patients with histopathologically proven lung lesions (15 patients each with adenocarcinoma, squamous cell carcinoma, small cell lung cancer, carcinoid, and organizing pneumonia) who underwent an unenhanced CT scan of the chest were included. Three radiologists independently segmented each lesion manually in 3D and 2D with and without pre-segmentation volume definition by a HU threshold, and shape parameters and original, Laplacian of Gaussian-filtered, and wavelet-based texture features were derived. To assess interobserver reliability and identify the most robust texture features, intraclass correlation coefficients (ICCs) for different segmentation settings were calculated.

Results: Shape parameters had high reliability (64-79% had excellent and good ICCs). Texture features had weak reliability levels, with the highest ICCs (38% excellent or good) found for original features in 3D segmentation without the use of a HU threshold. A small proportion (4.3-11.5%) of texture features had excellent or good ICC values at all segmentation settings.

Conclusion: Interobserver reliability of texture features from CT scans of a heterogeneous collection of manually segmented lung lesions was low with a small proportion of features demonstrating high reliability independent of the segmentation settings. These results indicate a limited applicability of texture analysis and the need to define robust texture features in patients with lung lesions.

Key Points: • Our study showed a low reproducibility of texture features when 3 radiologists independently segmented lung lesions in CT images, which highlights a serious limitation of texture analysis. • Interobserver reliability of texture features was low regardless of whether the lesion was segmented in 2D and 3D with or without a HU threshold. • In contrast to texture features, shape parameters showed a high interobserver reliability when lesions were segmented in 2D vs. 3D with and without a HU threshold of - 50.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121537PMC
http://dx.doi.org/10.1007/s00330-023-09500-8DOI Listing

Publication Analysis

Top Keywords

texture features
36
interobserver reliability
20
texture analysis
16
texture
13
lung lesions
12
shape parameters
12
excellent good
12
features
11
reliability
9
lesion segmentation
8

Similar Publications