98%
921
2 minutes
20
Understanding natural selection in humans and other species is a major focus for the use of machine learning in population genetics. Existing methods rely on computationally intensive simulated training data. Unlike efficient neutral coalescent simulations for demographic inference, realistic simulations of selection typically requires slow forward simulations. Because there are many possible modes of selection, a high dimensional parameter space must be explored, with no guarantee that the simulated models are close to the real processes. Mismatches between simulated training data and real test data can lead to incorrect inference. Finally, it is difficult to interpret trained neural networks, leading to a lack of understanding about what features contribute to classification. Here we develop a new approach to detect selection that requires relatively few selection simulations during training. We use a Generative Adversarial Network (GAN) trained to simulate realistic neutral data. The resulting GAN consists of a generator (fitted demographic model) and a discriminator (convolutional neural network). For a genomic region, the discriminator predicts whether it is "real" or "fake" in the sense that it could have been simulated by the generator. As the "real" training data includes regions that experienced selection and the generator cannot produce such regions, regions with a high probability of being real are likely to have experienced selection. To further incentivize this behavior, we "fine-tune" the discriminator with a small number of selection simulations. We show that this approach has high power to detect selection in simulations, and that it finds regions under selection identified by state-of-the art population genetic methods in three human populations. Finally, we show how to interpret the trained networks by clustering hidden units of the discriminator based on their correlation patterns with known summary statistics. In summary, our approach is a novel, efficient, and powerful way to use machine learning to detect natural selection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028936 | PMC |
http://dx.doi.org/10.1101/2023.03.07.531546 | DOI Listing |
J Appl Clin Med Phys
September 2025
Icon Cancer Centre Toowoomba, Toowoomba, Queensland, Australia.
Introduction: The role of imaging in radiotherapy is becoming increasingly important. Verification of imaging parameters prior to treatment planning is essential for safe and effective clinical practice.
Methods: This study described the development and clinical implementation of ImageCompliance, an automated, GUI-based script designed to verify and enforce correct CT and MRI parameters during radiotherapy planning.
Eur J Med Res
September 2025
Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.
View Article and Find Full Text PDFDiagn Pathol
September 2025
Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.
View Article and Find Full Text PDFBMC Health Serv Res
September 2025
Institute of General Practice, Rostock University Medical Center, Doberaner Str. 142, Rostock, 18057, Germany.
Background: Post-viral syndromes, including long- and post-COVID, often lead to persistent symptoms such as fatigue and dyspnoea, affecting patients' daily lives and ability to work. The COVI-Care M-V trial examines whether interprofessional, patient-centred teleconsultations, initiated by general practitioners in cooperation with specialists, can help reduce symptom burden and improve care for patients.
Methods: To evaluate the effectiveness of the intervention under routine care conditions, a cluster-randomised controlled trial is being conducted.
Antimicrob Resist Infect Control
September 2025
School of Medicine and Health Management, Guizhou Province, Guizhou Medical University, GUI'an New District, 6 Ankang Avenue, Guiyang, People's Republic of China.
Background: Although current evidence supports the effectiveness of social norm feedback (SNF) interventions, their sustained integration into primary care remains limited. Drawing on the elements of the antimicrobial SNF intervention strategy identified through the Delphi-based evidence applicability evaluation, this study aims to explore the barriers and facilitators to its implementation in primary care institutions, thereby informing future optimization.
Methods: Based on the five domains of the Consolidated Framework for Implementation Research (CFIR), we developed semi-structured interview and focus group discussion guides.