Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Local and deterministic trapping of single nanoparticles (NPs) has always been a challenging topic due to the difficulties faced at such a small particle size. These difficulties are concerned with the stability, simplicity, robustness, and efficiency of the used trapping technique. Here, we used two-photon polymerization (TPP) of a prefunctionalized photopolymer to obtain a nanometric polymer layer and selectively attract single colloidal gold NPs (AuNPs). Thanks to a deep photochemical study of the threshold energy, we identified a photopolymerization regime allowing one to tune the polymer size and immobilize single gold nanoparticles. This method is promising for the fabrication of single photon sources.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c03140DOI Listing

Publication Analysis

Top Keywords

single colloidal
8
colloidal gold
8
gold nanoparticles
8
single
5
strategy patterning
4
patterning single
4
nanoparticles photon
4
photon polymerized
4
polymerized functionalized
4
functionalized ultrathin
4

Similar Publications

Colloidal semiconductor quantum dots (QDs) can generate multiple excitons (MXs) within a single QD. Owing to their large absorption cross-section, efficient utilization of MX is anticipated for the development of light-harvesting systems. However, MXs typically undergo nonradiative decay via Auger recombination (AR).

View Article and Find Full Text PDF

Glutathione-responsive and mitochondria targeting enhanced photodynamic therapy and cascade-triggered carbon monoxide release for all-in-one tumor therapy.

J Colloid Interface Sci

September 2025

School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China; Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, Henan Normal University, Xinxiang, Henan 453007, China. Electronic address:

Carbon monoxide (CO) has demonstrated significant potential in tumor therapy. However, the uncontrolled release of CO and single-modality therapy often fail to achieve the desired therapeutic outcomes. To address the above deficiencies, mesoporous silica nanoparticles containing tetrasulfide bonds (TMSNs) were constructed as intelligent nanocarriers to co-deliver a mitochondria-targeting photosensitizer (Au-TPP) and a photodynamically activated CO-releasing molecule (FeCO), enabling the synergistic combination of photodynamic therapy (PDT) and CO therapy.

View Article and Find Full Text PDF

Developing single-atom catalysts (SACs) with dense active sites and universal synthesis strategies remains a critical challenge. Herein, we present a scalable and universal strategy to synthesize high-density transition metal single-atom sites, anchored in nitrogen-doped porous carbon (M-SA@NC, M = Fe, Co, Ni) and investigate their oxygen reduction reaction (ORR) catalytic activity for flexible Zn-air batteries (ZABs). Using a facile coordination-pyrolysis strategy, atomically dispersed M-N sites with high metal loading are achieved.

View Article and Find Full Text PDF

In situ integrated design of composite SEI-gel electrolytes boosting high-safety and wide-temperature lithium metal batteries.

J Colloid Interface Sci

September 2025

Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China. Electronic address:

Neither single electrolyte design nor solid electrolyte interface (SEI) engineering alone can effectively resolve the dual challenges of sluggish reaction kinetics and unstable interfaces in polymer-based lithium metal batteries (LMBs). Herein, a rational integrated design strategy is adopted to simultaneously fabricate poly(trifluoroethyl methacrylate-co-4-oxo-5,8,11-trioxa-3-azatridec-12-en-1-yl acrylate)-based gel polymer electrolyte (PTDA-GPE) and stable composite SEI during the thermal-induced in situ polymerization process. The resulting PTDA-GPE demonstrates superior Li transport kinetics (1.

View Article and Find Full Text PDF

Stimuli-activable hollow CuO@C/N doped paste for the prevention of white spot lesions in orthodontic treatments.

Colloids Surf B Biointerfaces

August 2025

School of Stomatology, Qingdao University, Qingdao 266023, PR China; Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China.

White spot lesions (WSLs) are the most common complication of orthodontic treatment, compromising dental health and significantly affecting aesthetics. To address this clinical challenge, this study aims to develop a dual-functional therapeutic strategy that simultaneously promotes the remineralization of demineralized enamel and inhibits the activity of cariogenic bacteria, thereby achieving effective prevention and treatment of WSLs. A hollow double-shell structured CuO@N/C nanozyme (H-CuO@N/C) was synthesized using a one-step hydrothermal method.

View Article and Find Full Text PDF