Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Impaired lung function is associated with an increased risk for cognitive decline. F-18 fluorodeoxyglucose (FDG) PET is a well-known neurodegenerative biomarker for dementia. We investigated the association between lung and brain function using FDG PET in patients with lung cancer.

Methods: A random sub-sample of 102 patients with lung cancer and without a self-reported history of neuropsychiatric disorders were recruited and underwent both lung function tests and FDG PET scans before treatment. Lung function was analyzed as the percentage predicted value (% pred) of forced vital capacity (FVC) and forced expiratory volume in the first second (FEV1). FDG uptake was measured as standardized uptake values (SUVs) in the frontal, parietal, temporal, and occipital cortices and cognition-related regions. Regional SUV ratios (SUVRs) were calculated by dividing the SUV in each region by the whole-brain SUV and were then evaluated against lung function indices and clinical variables.

Results: After excluding five patients with brain metastases, 97 patients were included in the final analysis (mean age, 67.7 ± 10.3 years). Mean FVC and mean FEV1 were 80.0% ± 15.4% and 77.6% ± 17.8%, respectively. Both FVC and FEV1 were positively correlated with SUVRs in all brain regions after adjusting the data for clinical variables. The degree of decrease in SUVRs related to lung function was not significantly different between cognition-related regions and other regions.

Conclusion: Impaired lung function was associated with decreased glucose metabolism in all regions of the brain, indicating that cognitive decline related to decreased glucose metabolism may be due to reduced perfusion.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MNM.0000000000001686DOI Listing

Publication Analysis

Top Keywords

lung function
28
fdg pet
16
impaired lung
12
cognitive decline
12
lung
11
function
8
lung cancer
8
function associated
8
patients lung
8
cognition-related regions
8

Similar Publications

Cell senescence is a state of stable proliferation arrest characterized by morphological changes and high senescence-associated β-galactosidase (SA-β-gal) activity. Inducing senescence in cancer cells is beneficial for cancer therapy due to proliferation arrest, however, the mechanisms underlying this process remain insufficiently understood. Therefore, the present study investigated the mechanisms of radiation-induced cellular senescence in A549 human lung cancer cells, focusing on the DNA damage response and cell cycle regulation.

View Article and Find Full Text PDF

Mean Airway Pressure-An Informative but Overlooked Indicator of Mechanical Power.

Crit Care Explor

September 2025

Division of Pulmonary, Allergy, Critical Care, and Sleep, University of Minnesota, Minneapolis, MN.

Mean airway pressure, a monitored variable continuously available on the modern ventilator, is the pressure measured at the airway opening averaged over the time needed to complete the entire respiratory cycle. Mean airway pressure is well recognized to connect three key physiologic processes in mechanical ventilation: physical stretch, cardiovascular dynamics, and pulmonary gas exchange. Although other parameters currently employed in adults to determine "safe" ventilation are undoubtedly valuable for daily practice, all have limitations for continuous monitoring of ventilation hazard.

View Article and Find Full Text PDF

Background: Pheochromocytoma (PCC) is a rare neuroendocrine tumor, with 10-15% of cases showing malignant behavior defined by metastatic spread, including exceptionally rare central nervous system (CNS) involvement. Brain metastases present unique diagnostic and therapeutic challenges due to their potential to impair neurological function. This study reports a case of malignant PCC (mPCC) with CNS metastases and a systematic review to clarify the clinical patterns, management strategies, and prognostic factors.

View Article and Find Full Text PDF

Background: Understanding respiratory motions of liver and its surrogate organs is crucial for precise dose delivery in liver cancer radiotherapy. Although these motions have been studied for respiratory motion management in the supine posture, few studies have quantified them and evaluated their correlations in the upright posture.

Purpose: This study quantified the respiratory motions of liver and surrogate organs and evaluated the correlations between the liver motions and surrogate signals for respiratory motion monitoring in both the supine and upright postures.

View Article and Find Full Text PDF

Background: Four-dimensional magnetic resonance imaging (4D-MRI) holds great promise for precise abdominal radiotherapy guidance. However, current 4D-MRI methods are limited by an inherent trade-off between spatial and temporal resolutions, resulting in compromised image quality characterized by low spatial resolution and significant motion artifacts, hindering clinical implementation. Despite recent advancements, existing methods inadequately exploit redundant frame information and struggle to restore structural details from highly undersampled acquisitions.

View Article and Find Full Text PDF