Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The necessity for the large-scale screening of viral pathogens has been amply demonstrated during the COVID-19 pandemic. During this time, SARS-CoV-2 nucleic acid pooled testing, such as Dorfman-based group testing, was widely adopted in response to the sudden increased demand for detection. However, the current approach still necessitates the individual retesting of positive pools. Here, we established an efficient method termed the fragment-length identification of pooled nucleic acid samples (FLIPNAS), where all subsamples ( = 8) can be uniquely labelled and tested in a single-time detection among pools of samples. We used a novel and simple design of unique primers (UPs) to generate amplicons of unique lengths after reverse transcription and polymerase chain reaction to reach this aim. As a result, the unique lengths of the amplicons can be recognized and traced back to the corresponding UPs and specific samples. Our results demonstrated that FLIPNAS could recognize one to eight positive subsamples in a single test without retesting positive pools. The system also showed sufficient sensitivity for the mass monitoring of SARS-CoV-2 and no cross-reactivity against three common respiratory diseases. Moreover, the FLIPNAS results of 40 samples with a positive ratio of 7.8% were in 100% agreement with their individual detection results using the gold standard. Collectively, this study shows that the efficiency of nucleic acid pooling detection can be further improved by FLIPNAS, which can speed up testing and mitigate the urgent demand for resources.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3an00058cDOI Listing

Publication Analysis

Top Keywords

nucleic acid
16
large-scale screening
8
screening viral
8
viral pathogens
8
identification pooled
8
pooled nucleic
8
acid samples
8
samples flipnas
8
retesting positive
8
positive pools
8

Similar Publications

Lipid nanoparticles: Composition, formulation, and application.

Mol Ther Methods Clin Dev

June 2025

Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.

Lipid nanoparticles (LNPs) are lead non-viral vectors for delivering nucleic acids. LNPs can efficiently encapsulate nucleic acids, protect them from degradation, enhance cellular uptake and induce endosome escape, which show high transfection efficiency and low immunogenicity. In this review, we first introduce the LNP components, highlighting their critical roles in encapsulation, stability, delivery efficiency, and tissue tropism.

View Article and Find Full Text PDF

Gut microbiota dysbiosis in people living with HIV who have cancer: novel insights and diagnostic potential.

Front Immunol

September 2025

Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.

Background: People living with HIV(PLWH) are a high-risk population for cancer. We conducted a pioneering study on the gut microbiota of PLWH with various types of cancer, revealing key microbiota.

Methods: We collected stool samples from 54 PLWH who have cancer (PLWH-C), including Kaposi's sarcoma (KS, n=7), lymphoma (L, n=22), lung cancer (LC, n=12), and colorectal cancer (CRC, n=13), 55 PLWH who do not have cancer (PLWH-NC), and 49 people living without HIV (Ctrl).

View Article and Find Full Text PDF

Background: Metabolic reprogramming is an important hallmark of cervical cancer (CC), and extensive studies have provided important information for translational and clinical oncology. Here we sought to determine metabolic association with molecular aberrations, telomere maintenance and outcomes in CC.

Methods: RNA sequencing data from TCGA cohort of CC was analyzed for their metabolic gene expression profile and consensus clustering was then performed to classify tumors into different groups/subtypes.

View Article and Find Full Text PDF

Comparative Analysis of COVID-19 Gene Target Dropout/Failure Results using Thermofisher TaqPath COVID-19 Combo Kit and Nextstrain CoVariants Genomic Databases.

J Healthc Sci Humanit

January 2024

Assistant Professor & Clinical Coordinator, Health Informatics Program, School of Health Professions, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, MSC 94, Brooklyn, NY 11203, (718) 270-7738, Fax: (718) 270-7739 Email:

COVID-19 variants continue to infect thousands of people even though the end of the pandemic was announced on May 11, 2023. Nextstrain CoVariants (CoVariants) genomic databases provide detailed information about more than 31 variants of COVID-19 viruses that have been identified through genomic sequencing, showing the mutations they carry. Mutated viruses may yield a negative result for a gene target using a PCR test that has a positive COVID-19 test result.

View Article and Find Full Text PDF