Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Nonsurgical interventions such as bracing with ankle foot orthoses (AFOs) aim to assist, restore, and redirect weightbearing forces to address difficulty with mobilization. We identified a custom carbon fiber passive dynamic ankle foot orthosis (PDAFO) that was designed to meet the needs of military combat veterans. We sought to evaluate the off-loading properties of one model of PDAFO (ExoSym) in a civilian population.

Methods: Civilian patients 18 years or older were prescribed a PDAFO by a single surgeon. Pedobarographic data were obtained using the Tekscan F-Scan system. With the insole, participants were instructed to walk at a self-selected pace along a 20 m walkway under 3 conditions: (1) insole placed in between the brace and foot (over); (2) insole placed between the brace and insole of the shoe (under); (3) without the brace, the insole was placed in between the foot and insole of the shoe in both limbs (without).For assessment, forefoot and heel areas were evaluated with respect to maximal force, force*time integral (FTI), maximal contact area, maximal contact pressure, pressure*time integral (PTI), center of force (COF) excursion.

Results: Six patients with arthritic foot and ankle conditions completed pedobarographic assessment for analysis. The brace reduced forefoot maximal force and contact pressures by 66% and 49%, respectively (538 ± 236 to 185 ± 130 N [ < .001], and 99 ± 38 to 50 ± 24  < .002). Additionally, participants were observed to load the forefoot portion of the brace with double the maximum contact pressures compared to the unbraced foot (204 ± 57 to 99 ± 38 kPa,  < .001).

Conclusion: The results of this study showed that the PDAFO unloaded substantial force and pressure experienced by the forefoot. Participants loaded the brace to a greater extent than when going unbraced. ADAFO can provide measurable pressure relief for patients with arthritic conditions.

Level Of Evidence: Level IV, case series.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014983PMC
http://dx.doi.org/10.1177/24730114231157734DOI Listing

Publication Analysis

Top Keywords

ankle foot
12
passive dynamic
8
dynamic ankle
8
foot orthoses
8
civilian patients
8
patients arthritic
8
foot ankle
8
insole brace
8
foot insole
8
brace insole
8

Similar Publications

Introduction: Intrinsic foot muscles and the plantar fascia are crucial for foot health, which diminishes with age and conditions such as chronic plantar fasciitis (PF). Ultrasound (US) is an accessible and cost-effective method for evaluating these structures. This study aims to assess the repeatability, reliability, and validity of plantar fascia thickness and flexor digitorum brevis (FDB) muscle measurements using US compared with MRI in individuals with and without PF.

View Article and Find Full Text PDF

The aim of this study was to propose reference values for the Dynamic Evaluation Method of Lower Limb Joint Alignment (MADAAMI II). During the 2023 Joinville Dance Festival, 346 dancers (315 females and 31 males), aged between 15 and 58 years, with a minimum of 5 years of ballet experience, were randomly evaluated. The dancers were filmed performing the three-step sequence (demi plié, grand plié, and fondu) of the MADAAMI II, in the first foot position, with self-selected turnout and at 120 degrees.

View Article and Find Full Text PDF

Achieving optimal alignment and fit is a key aspect of ankle-foot orthosis (AFO) design, as it directly influences the effectiveness of the device. While digital workflows offer the potential to integrate quantifiable alignment measures and corrections into AFO design, a major challenge remains in controlling lower-limb positioning and alignment during 3D scanning. This study aimed to evaluate pediatric AFO alignment and shape differences of directly scanned (live scan) vs casted lower limb models.

View Article and Find Full Text PDF

Patellofemoral Biomechanics Considerations: Analysis of Factors Contributing to Patellofemoral Pain.

Curr Sports Med Rep

September 2025

Uniformed Services University, National Capital Consortium Military Sports Medicine Fellowship, Alexander T. Augusta Military Medical Center, Fort Belvoir, VA.

Patellofemoral pain syndrome is a common cause of anterior knee pain. It has a prevalence of 22.7% in the general population and tends to affect females more than males.

View Article and Find Full Text PDF