A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Microalgae-based constructed wetland system enhances nitrogen removal and reduce carbon emissions: Performance and mechanisms. | LitMetric

Microalgae-based constructed wetland system enhances nitrogen removal and reduce carbon emissions: Performance and mechanisms.

Sci Total Environ

School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Combination of constructed wetlands (CWs) and microalgae-based technologies has been proved as effective wastewater treatment option; however, little attention was paid to investigate the optimal combination ways. This study showed that the integrated system (IS) connecting microalgal pond with CWs exhibited improved pollutant-removal efficiencies and preferred carbon reduction effects compared to other alternatives such as coupled system or independent CWs. Microbial analysis demonstrated that core microorganisms (e.g., Acinetobacter and Thermomonas) of the IS were mostly associated with carbon, nitrogen, and energy metabolism. Based on co-occurrence networks, microbial quantity with denitrification function in the IS accounted for 71.01 % of the microorganism related to nitrogen metabolism, which was higher than that of 48.84 % in the independent CWs, indicating that the presence of microalgae in IS played important role in promoting biological denitrification. These findings provide insights into the microbial mechanism and highlights the complementary effects between microalgae and CWs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.162883DOI Listing

Publication Analysis

Top Keywords

independent cws
8
cws
5
microalgae-based constructed
4
constructed wetland
4
wetland system
4
system enhances
4
enhances nitrogen
4
nitrogen removal
4
removal reduce
4
reduce carbon
4

Similar Publications