98%
921
2 minutes
20
Introduction: The classification of prostate cancer (PCa) lesions using Prostate Imaging Reporting and Data System (PI-RADS) suffers from poor inter-reader agreement. This study compared quantitative parameters or radiomic features from multiparametric magnetic resonance imaging (mpMRI) or positron emission tomography (PET), as inputs into machine learning (ML) to predict the Gleason scores (GS) of detected lesions for improved PCa lesion classification.
Methods: 20 biopsy-confirmed PCa subjects underwent imaging before radical prostatectomy. A pathologist assigned GS from tumour tissue. Two radiologists and one nuclear medicine physician delineated the lesions on the mpMR and PET images, yielding 45 lesion inputs. Seven quantitative parameters were extracted from the lesions, namely T2-weighted (T2w) image intensity, apparent diffusion coefficient (ADC), transfer constant (K), efflux rate constant (K), and extracellular volume ratio (V) from mpMR images, and SUV and SUV from PET images. Eight radiomic features were selected out of 109 radiomic features from T2w, ADC and PET images. Quantitative parameters or radiomic features, with risk factors of age, prostate-specific antigen (PSA), PSA density and volume, of 45 different lesion inputs were input in different combinations into four ML models - Decision Tree (DT), Support Vector Machine (SVM), k-Nearest-Neighbour (kNN), Ensembles model (EM).
Results: SUV yielded the highest accuracy in discriminating detected lesions. Among the 4 ML models, kNN yielded the highest accuracies of 0.929 using either quantitative parameters or radiomic features with risk factors as input.
Conclusions: ML models' performance is dependent on the input combinations and risk factors further improve ML classification accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mri.2023.03.009 | DOI Listing |
Eur J Radiol
September 2025
Department of Radiology, Affiliated Hospital of Hebei University, Baoding 071000, China. Electronic address:
Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.
Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.
Ann Surg Oncol
September 2025
HepatoBiliaryPancreatic Surgery, AOU Careggi, Department of Experimental and Clinical Medicine (DMSC), University of Florence, Florence, Italy.
Purpose: To build computed tomography (CT)-based radiomics models, with independent external validation, to predict recurrence and disease-specific mortality in patients with colorectal liver metastases (CRLM) who underwent liver resection.
Methods: 113 patients were included in this retrospective study: the internal training cohort comprised 66 patients, while the external validation cohort comprised 47. All patients underwent a CT study before surgery.
Int J Surg
September 2025
Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
Background: Precise preoperative discrimination of invasive lung adenocarcinoma (IA) from preinvasive lesions (adenocarcinoma in situ [AIS]/minimally invasive adenocarcinoma [MIA]) and prediction of high-risk histopathological features are critical for optimizing resection strategies in early-stage lung adenocarcinoma (LUAD).
Methods: In this multicenter study, 813 LUAD patients (tumors ≤3 cm) formed the training cohort. A total of 1,709 radiomic features were extracted from the PET/CT images.
Front Oncol
August 2025
Department of Radiology, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China.
Objectives: Lymph node metastasis (LNM) is an important factor affecting the stage and prognosis of patients with lung adenocarcinoma. The purpose of this study is to explore the predictive value of the stacking ensemble learning model based on F-FDG PET/CT radiomic features and clinical risk factors for LNM in lung adenocarcinoma, and elucidate the biological basis of predictive features through pathological analysis.
Methods: Ninety patients diagnosed with lung adenocarcinoma who underwent PET/CT were retrospectively analyzed and randomly divided into the training and testing sets in a 7:3 ratio.
Front Oncol
August 2025
Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
Purpose: Identifying radiomics features that help predict whether glioblastoma patients are prone to developing epilepsy may contribute to an improvement of preventive treatment and a better understanding of the underlying pathophysiology.
Materials And Methods: In this retrospective study, 3-T MRI data of 451 pretreatment glioblastoma patients (mean age: 61.2 ± 11.