98%
921
2 minutes
20
Tissues are composed of diverse cell types and cellular states that organize into distinct ecosystems with specialized functions. EcoTyper is a collection of machine learning tools for the large-scale delineation of cellular ecosystems and their constituent cell states from bulk, single-cell, and spatially resolved gene expression data. In this chapter, we provide a primer on EcoTyper and demonstrate its use for the discovery and recovery of cell states and ecosystems from healthy and diseased tissue specimens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2986-4_4 | DOI Listing |
Front Immunol
September 2025
Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
Cancer is a multifaceted disease driven by a complex interplay of genetic predisposition, environmental factors and lifestyle habits. With the accelerating pace of cancer research, the gut microbiome has emerged as a critical modulator of human health and immunity. Disruption in the gut microbial populations and diversity, known as dysbiosis, has been linked with the development of chronic inflammation, oncogenesis, angiogenesis and metastasis.
View Article and Find Full Text PDFClin Pharmacol
September 2025
Department of Biology, College of Science Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
Cancer remains the second leading cause of death worldwide, highlighting the urgent need for novel therapeutic approaches. Fungi are a rich source of bioactive metabolites, some of which exhibit potent anticancer properties. This scoping review evaluates the current research on fungal metabolites with anticancer potential, focusing on species native to Saudi Arabia's unique ecosystem.
View Article and Find Full Text PDFFront Oral Health
August 2025
Conservative Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, Nitte (deemed to be) University, Mangalore, India.
Short-chain fatty acids (SCFAs), primarily acetate (C2), propionate (C3), and butyrate (C4), are crucial microbial metabolites formed by the fermentation of dietary fibers by gut microbiota in the colon. These SCFAs, characterized by fewer than six carbon atoms, serve as an essential energy source for colonic epithelial cells and contribute approximately 10% of the body's total energy requirement. They are central to maintaining gut health through multiple mechanisms, including reinforcing intestinal barrier function, exerting anti-inflammatory effects, regulating glucose and lipid metabolism, and influencing host immune responses.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China.
Recent breakthroughs in tumor biology have redefined the tumor microenvironment as a dynamic ecosystem in which the nervous system has emerged as a pivotal regulator of oncogenesis. In addition to their classical developmental roles, neural‒tumor interactions orchestrate a sophisticated network that drives cancer initiation, stemness maintenance, metabolic reprogramming, and therapeutic evasion. This crosstalk operates through multimodal mechanisms, including paracrine signaling, electrophysiological interactions, and structural innervation guided by axon-derived guidance molecules.
View Article and Find Full Text PDFAlzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDF