Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: The ability to correctly associate cues and contexts with threat is critical for survival, and the inability to do so can result in threat-related disorders such as posttraumatic stress disorder. The prefrontal cortex (PFC) and hippocampus are well known to play critical roles in cued and contextual threat memory processing. However, the circuits that mediate prefrontal-hippocampal modulation of context discrimination during cued threat processing are less understood. Here, we demonstrate the role of a previously unexplored projection from the ventromedial region of PFC (vmPFC) to the lateral entorhinal cortex (LEC) in modulating the gain of behavior in response to contextual information during threat retrieval and encoding.
Methods: We used optogenetics followed by in vivo calcium imaging in male C57/B6J mice to manipulate and monitor vmPFC-LEC activity in response to threat-associated cues in different contexts. We then investigated the inputs to, and outputs from, vmPFC-LEC cells using Rabies tracing and channelrhodopsin-assisted electrophysiology.
Results: vmPFC-LEC cells flexibly and bidirectionally shaped behavior during threat expression, shaping sensitivity to contextual information to increase or decrease the gain of behavioral output in response to a threatening or neutral context, respectively.
Conclusions: Glutamatergic vmPFC-LEC cells are key players in behavioral gain control in response to contextual information during threat processing and may provide a future target for intervention in threat-based disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354215 | PMC |
http://dx.doi.org/10.1016/j.biopsych.2023.01.009 | DOI Listing |