98%
921
2 minutes
20
The Ocean Carbon and Acidification Data System (OCADS) is a data management system at the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI). It manages a wide range of ocean carbon and acidification data, including chemical, physical, and biological observations collected from research vessels, ships of opportunity, and uncrewed platforms, as well as laboratory experiment results, and model outputs. Additionally, OCADS serves as a repository for related Global Ocean Observing System (GOOS) biogeochemistry Essential Ocean Variables (EOVs), e.g., oxygen, nutrients, transient tracers, and stable isotopes. OCADS endeavors to be one of the world's leading providers of ocean carbon and acidification data, information, products, and services. To provide the best data management services to the ocean carbon and acidification research community, OCADS prioritizes adopting a customer-centric approach and gathering knowledge and expertise from the research community to improve its data management practices. OCADS aims to make all ocean carbon and acidification data accessible via a single portal, and welcomes submissions from around the world: https://www.ncei.noaa.gov/products/ocean-carbon-acidification-data-system/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017681 | PMC |
http://dx.doi.org/10.1038/s41597-023-02042-0 | DOI Listing |
Elife
September 2025
Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig Maximilians-Universität München, Munich, Germany.
The rapid emergence of mineralized structures in diverse animal groups during the late Ediacaran and early Cambrian periods likely resulted from modifications of pre-adapted biomineralization genes inherited from a common ancestor. As the oldest extant phylum with mineralized structures, sponges are key to understanding animal biomineralization. Yet, the biomineralization process in sponges, particularly in forming spicules, is not well understood.
View Article and Find Full Text PDFmSystems
September 2025
Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA.
Dinitrogen (N) fixation provides bioavailable nitrogen to the biosphere. However, in some habitats (e.g.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083 China.
Unlabelled: Marinisomatota (formerly recognized as Marinimicrobia, Marine Group A, and SAR406) are ubiquitous and abundant in marine environments, traditionally characterized as heterotrophic microorganisms. However, certain members of Marinisomatota have demonstrated the capacity to harness light for carbon dioxide fixation and the synthesis of organic compounds, thriving in the translucent zone or transitioning between the translucent and aphotic layers. The metabolic strategies driving the shift in trophic behaviors, and the factors influencing these transitions, remain largely unexplored.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.
Unlabelled: Marine heterotrophic prokaryotes initially release extracellular enzymes to cleave large organic molecules and then take up ambient substrates via transporters. Given the direct influence of extracellular enzymes on nutrient availability, understanding their diversity and dynamics is crucial in comprehending microbial interactions and organic matter cycling in aquatic ecosystems. In this study, metagenomics was employed to investigate the functional diversity and dynamics of extracellular enzymes and transporters in coastal waters over a 22-day period.
View Article and Find Full Text PDFBioscience
September 2025
School of the Environment, Centre for Biodiversity and Conservation Science of the University of Queensland, Commonwealth Scientific and Industrial Research Organization, Environment, Brisbane, Queensland, Austalia.
Plankton, a diverse group of aquatic organisms, make Earth livable, regulate aquatic life, and provide benefits to human societies such as access to clean water, food security, and well-being. They also support economies and inspire biotechnological innovations. This article aims to raise awareness of the value of plankton to humanity and serves as an informative guide for aquatic professionals, policymakers, and anyone interested in plankton.
View Article and Find Full Text PDF