Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn-air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN , FeN , and FeN coordinations are synthesized by carbonization of Fe-rich polypyrrole precursors. The FeN sites possess a higher Fe oxidation state (+2.62) than the FeN (+2.23) and FeN (+2.47) sites, and higher ORR activity. Density functional theory calculations verify that the FeN coordination optimizes the adsorption and desorption of ORR intermediates, dramatically lowering the energy barrier for OH desorption in the rate-limiting ORR step. A primary ZAB constructed using the FeNC catalyst with FeN sites demonstrates state-of-the-art performance (an open circuit potential of 1.629 V, power density of 159 mW cm ). Results confirm an intimate structure-activity relationship between Fe coordination, Fe oxidation state, and ORR activity in FeNC catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202300373 | DOI Listing |