98%
921
2 minutes
20
Background: Cerebral venous thrombosis (CVT) is a rare cerebrovascular disease. Routine brain magnetic resonance imaging is commonly used to diagnose CVT. This study aimed to develop and evaluate a novel deep learning (DL) algorithm for detecting CVT using routine brain magnetic resonance imaging.
Methods: Routine brain magnetic resonance imaging, including T1-weighted, T2-weighted, and fluid-attenuated inversion recovery images of patients suspected of CVT from April 2014 through December 2019 who were enrolled from a CVT registry, were collected. The images were divided into 2 data sets: a development set and a test set. Different DL algorithms were constructed in the development set using 5-fold cross-validation. Four radiologists with various levels of expertise independently read the images and performed diagnosis within the test set. The diagnostic performance on per-patient and per-segment diagnosis levels of the DL algorithms and radiologist's assessment were evaluated and compared.
Results: A total of 392 patients, including 294 patients with CVT (37±14 years, 151 women) and 98 patients without CVT (42±15 years, 65 women), were enrolled. Of these, 100 patients (50 CVT and 50 non-CVT) were randomly assigned to the test set, and the other 292 patients comprised the development set. In the test set, the optimal DL algorithm (multisequence multitask deep learning algorithm) achieved an area under the curve of 0.96, with a sensitivity of 96% (48/50) and a specificity of 88% (44/50) on per-patient diagnosis level, as well as a sensitivity of 88% (129/146) and a specificity of 80% (521/654) on per-segment diagnosis level. Compared with 4 radiologists, multisequence multitask deep learning algorithm showed higher sensitivity both on per-patient (all <0.05) and per-segment diagnosis levels (all <0.001).
Conclusions: The CVT-detected DL algorithm herein improved diagnostic performance of routine brain magnetic resonance imaging, with high sensitivity and specificity, which provides a promising approach for detecting CVT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/STROKEAHA.122.041520 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Max Planck Institute for Solar System Research, Göttingen 37077, Germany.
Turbulent convection governs heat transport in both natural and industrial settings, yet optimizing it under extreme conditions remains a significant challenge. Traditional control strategies, such as predefined temperature modulation, struggle to achieve substantial enhancement. Here, we introduce a deep reinforcement learning (DRL) framework that autonomously discovers optimal control policies to maximize heat transfer in turbulent Rayleigh-Bénard convection.
View Article and Find Full Text PDFJMIR Med Inform
September 2025
Department of Radiology, Air Force Medical Center, Air Force Medical University, Fucheng Road 30, Haidian District, Beijing, CN.
Background: Lateral malleolar avulsion fracture (LMAF) and subfibular ossicle (SFO) are distinct entities that both present as small bone fragments near the lateral malleolus on imaging, yet require different treatment strategies. Clinical and radiological differentiation is challenging, which can impede timely and precise management. On imaging, magnetic resonance imaging (MRI) is the diagnostic gold standard for differentiating LMAF from SFO, whereas radiological differentiation on computed tomography (CT) alone is challenging in routine practice.
View Article and Find Full Text PDFNanoscale
September 2025
School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
The challenge of photocatalytic hydrogen production has motivated a targeted search for MXenes as a promising class of materials for this transformation because of their high mobility and high light absorption. High-throughput screening has been widely used to discover new materials, but the relatively high cost limits the chemical space for searching MXenes. We developed a deep-learning-enabled high-throughput screening approach that identified 14 stable candidates with suitable band alignment for water splitting from 23 857 MXenes.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
September 2025
Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.
Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.
View Article and Find Full Text PDFDiscov Nano
September 2025
Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.
View Article and Find Full Text PDF