Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Growing evidence suggests that phase-locked deep brain stimulation (DBS) can effectively regulate abnormal brain connectivity in neurological and psychiatric disorders. This letter therefore presents a low-power SoC with both neural connectivity extraction and phase-locked DBS capabilities. A 16-channel low-noise analog front-end (AFE) records local field potentials (LFPs) from multiple brain regions with precise gain matching. A novel low-complexity phase estimator and neural connectivity processor subsequently enable energy-efficient, yet accurate measurement of the instantaneous phase and cross-regional synchrony measures. Through flexible combination of neural biomarkers such as phase synchrony and spectral energy, a four-channel charge-balanced neurostimulator is triggered to treat various pathological brain conditions. Fabricated in 65-nm CMOS, the SoC occupies a silicon area of 2.24 mm and consumes 60 W, achieving over 60% power saving in neural connectivity extraction compared to the state-of-the-art. Extensive measurements demonstrate multi-channel LFP recording, real-time extraction of phase and neural connectivity measures, and phase-locked stimulation in rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997065PMC
http://dx.doi.org/10.1109/lssc.2023.3238797DOI Listing

Publication Analysis

Top Keywords

neural connectivity
20
connectivity extraction
12
extraction phase-locked
8
phase-locked deep
8
deep brain
8
brain stimulation
8
neural
6
connectivity
6
brain
5
16-channel low-power
4

Similar Publications

Emotional contagion is an important aspect of social interaction. Traditional theories suggest that it relies on mimicry of facial or emotional movements. To address the question of whether there is a distinction between emotional contagion and emotional mimicry, we conducted a meta-analysis using the ALE algorithm to identify brain regions activated by the two tasks.

View Article and Find Full Text PDF

Predicting complex time series with deep echo state networks.

Chaos

September 2025

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

Although many real-world time series are complex, developing methods that can learn from their behavior effectively enough to enable reliable forecasting remains challenging. Recently, several machine-learning approaches have shown promise in addressing this problem. In particular, the echo state network (ESN) architecture, a type of recurrent neural network where neurons are randomly connected and only the read-out layer is trained, has been proposed as suitable for many-step-ahead forecasting tasks.

View Article and Find Full Text PDF

Hybrid two-stage CNN for detection and staging of periodontitis on panoramic radiographs.

J Oral Biol Craniofac Res

August 2025

Neura Integrasi Solusi, Jl. Kebun Raya No. 73, Rejowinangun, Kotagede, Yogyakarta, 55171, Indonesia.

Background: Periodontal disease is an inflammatory condition causing chronic damage to the tooth-supporting connective tissues, leading to tooth loss in adults. Diagnosing periodontitis requires clinical and radiographic examinations, with panoramic radiographs crucial in identifying and assessing its severity and staging. Convolutional Neural Networks (CNNs), a deep learning method for visual data analysis, and Dense Convolutional Networks (DenseNet), which utilize direct feed-forward connections between layers, enable high-performance computer vision tasks with reduced computational demands.

View Article and Find Full Text PDF

Understanding how athletes mentally simulate and anticipate actions provides key insights into experience-driven brain plasticity. While previous studies have investigated motor imagery and action anticipation separately, little is known about how their underlying neural mechanisms converge or diverge in expert performers. This study conducted a meta-analysis using activation likelihood estimation (ALE) and meta-analytic connectivity modeling (MACM) to compare brain activation patterns between athletes and non-athletes across both tasks.

View Article and Find Full Text PDF

Neuronal networks in animal brains are considered to realize specific filter functions through the precise configuration of synaptic weights, which are autonomously regulated without external supervision. In this study, we employ a single Hodgkin-Huxley-type neuron with autapses as a minimum model to computationally investigate how spike-timing-dependent plasticity (STDP) adjusts synaptic weights through recurrent feedback. The results show that the weights undergo oscillatory potentiation or depression with respect to autaptic delay and high-frequency stimulation.

View Article and Find Full Text PDF