98%
921
2 minutes
20
The area of "Green Synthesis of Nano-medicine," as compared to its synthetic counterparts, is a relatively safer research technology for various biomedical applications, including identification, therapeutic application, and prevention of pathological conditions, pain control, safety, and development of human wellness. The present study explored the synthesis and characterization of AgNPs using the ethanolic extract of fruit as a reducing and stabilizing agent and its potential as an enzyme inhibitory agent. Urease inhibitors are helpful against many severe diseases, including gastric ulcers induced by Helicobacter pylori. The fruits of the plant were taken and ground to a fine powder. Plant material was added to 500 ml ethanol, and the mixture was filtered. The solvent of the filtrate was evaporated, and a thick, gummy extract was obtained and stored at 4°C in the refrigerator. AgNPs were green synthesized from solutions of AgNO3 using the extract, which was indicated by a change in the color from light brown to deep brown. The synthesized AgNPs were characterized via Ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Analysis showed the reduction of Ag+ to Ag0 at room temperature (25°C), and the average particle size of AgNPs was in the range of 40-80 nm. Consequently, the synthesized AgNPs were evaluated for their anti-urease activity. The maximum urease inhibition of the ethanolic extract was 88.5% at 5 mg conc., and of derived nanoparticles was 78.6% at 0.05 mg conc. The results were nearly similar to the control drug, i.e., thiourea (0.5 and 0.6 mM conc., respectively). The study concluded that the extract, as well as its green-derived AgNPs, might prove to be a better and safer substitute for their enzyme inhibitory potential in emerging medicine and novel drug delivery techniques to improve and maintain human health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992827 | PMC |
http://dx.doi.org/10.3389/fchem.2023.1065986 | DOI Listing |
RSC Adv
September 2025
Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
Thunb is endogenous to Southeast Asia and traditionally used for the treatment of bacterial and viral infections. Previous studies reported various pharmacological activities, including cytotoxic activity. The aim of this work was to identify phytoconstituents of the ethanolic extract of aerial parts using extensive 1D- and 2D-NMR analysis and HR-MS.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
Department of Pharmacy, Jiblah University for Medical and Health Science, Ibb, Yemen.
Background: () Resin has been used in traditional medicine for millennia because of its anti-inflammatory, antibacterial, and wound-healing characteristics. Recent research has proved its medicinal promise, particularly against resistant bacterial strains and oxidative stress.
Objective: This study seeks to assess the antimicrobial and antioxidant properties of resin, extracted with ethanol, and to formulate a topical cream for dermatological use, specifically targeting skin infections and inflammatory conditions such as acne.
Front Vet Sci
August 2025
Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda.
Background: Male infertility is a global health issue, with pharmaceutical agents such as cimetidine contributing significantly to gonadotoxicity through antiandrogenic and oxidative mechanisms. The search for natural protective agents has highlighted var. (collard greens) for its antioxidant and endocrine-modulating properties.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Department of Medicament, College of Medicine, Xizang University, Lhasa, China.
Background: (Benth.) Baker is a perennial shrub endemic to the Tibetan Plateau. Its seeds are traditional Tibetan medicine for treating jaundice, hepatitis, purulent tonsillitis, diphtheria, and parasitosis.
View Article and Find Full Text PDFLeg Med (Tokyo)
September 2025
Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
This study investigated headspace solid-phase microextraction (HS-SPME)-gas chromatography (GS)/mass spectrometry as a low-complexity method for accurate measurement of blood alcohol concentration (BAC) changes in humans over time following alcohol consumption. The aim was to develop an analytical method that would require as small blood samples as possible-smaller than that required for the conventional method-thereby reducing the burden on the subject. Polyethylene glycol (PEG) was used as the fiber material for SPME, and a DB-WAX capillary column was used for GC.
View Article and Find Full Text PDF