98%
921
2 minutes
20
The ability to deliver genetic cargo to human cells is enabling rapid progress in molecular medicine, but designing this cargo for precise expression in specific cell types is a major challenge. Expression is driven by regulatory DNA sequences within short synthetic promoters, but relatively few of these promoters are cell-type-specific. The ability to design cell-type-specific promoters using model-based optimization would be impactful for research and therapeutic applications. However, models of expression from short synthetic promoters (promoter-driven expression) are lacking for most cell types due to insufficient training data in those cell types. Although there are many large datasets of both endogenous expression and promoter-driven expression in other cell types, which provide information that could be used for transfer learning, transfer strategies remain largely unexplored for predicting promoter-driven expression. Here, we propose a variety of pretraining tasks, transfer strategies, and model architectures for modelling promoter-driven expression. To thoroughly evaluate various methods, we propose two benchmarks that reflect data-constrained and large dataset settings. In the data-constrained setting, we find that pretraining followed by transfer learning is highly effective, improving performance by 24-27%. In the large dataset setting, transfer learning leads to more modest gains, improving performance by up to 2%. We also propose the best architecture to model promoter-driven expression when training from scratch. The methods we identify are broadly applicable for modelling promoter-driven expression in understudied cell types, and our findings will guide the choice of models that are best suited to designing promoters for gene delivery applications using model-based optimization. Our code and data are available at https://github.com/anikethjr/promoter_models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002662 | PMC |
http://dx.doi.org/10.1101/2023.02.24.529941 | DOI Listing |
Front Vet Sci
August 2025
Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China.
Kunjin virus (KUNV), a naturally attenuated strain of West Nile virus (WNV), shares similar transmission modes and hosts-primarily mosquitoes, birds, and horses. Globally, reverse genetics is the principal methodology for characterizing the molecular etiology of flaviviruses. In this study, cytomegalovirus (CMV) promoter-driven KUNV reporter replicons were engineered to incorporate three distinct reporter genes: Nanoluc, oxGFP, and mCherry.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
We study how protein condensates respond to a site of active RNA transcription (i.e., a gene promoter) due to electrostatic protein-RNA interactions.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada.
Dormancy release and germination of the seed are two separate, but continuous phases controlled by both external (e.g., light and temperature) and internal (e.
View Article and Find Full Text PDFMol Ther Nucleic Acids
September 2025
Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
Loss-of-function mutations in the gene cause β-catenin deficiency, resulting in CTNNB1 syndrome, a rare neurodevelopmental disorder characterized by motor and cognitive impairments. Given the wide variety of mutations across and its dosage sensitivity, a mutation-independent therapeutic approach that preserves endogenous gene regulation is critically needed. This study introduces spliceosome-mediated RNA -splicing as a novel approach to restore β-catenin production.
View Article and Find Full Text PDFJ Ethnopharmacol
August 2025
Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Collaborative Innovation Center of Prevention and Treatment of Major Diseases By Chinese and Western Medicine, Henan Province, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine,
Ethnopharmacological Relevance: Huanshaodan (HSD) is a Traditional Chinese Medicine Compound Prescription, traditionally used in the clinical treatment of Alzheimer's disease (AD) in China. Nevertheless, its bioactive constituents and mechanistic basis remain poorly understood.
Aim Of The Study: To identify the components derived from HSD that inhibit SIRT2 and investigate the underlying mechanisms in mitigating AD pathogenesis.