Increasing ecological heterogeneity can constrain biopesticide resistance evolution.

Trends Ecol Evol

Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.

Published: July 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microbial biopesticides containing living parasites are valuable emerging crop protection technologies against insect pests, but they are vulnerable to resistance evolution. Fortunately, the fitness of alleles that provide resistance, including to parasites used in biopesticides, frequently depends on parasite identity and environmental conditions. This context-specificity suggests a sustainable approach to biopesticide resistance management through landscape diversification. To mitigate resistance risks, we advocate increasing the range of biopesticides available to farmers, whilst simultaneously encouraging other aspects of landscape-wide crop heterogeneity that can generate variable selection on resistance alleles. This approach requires agricultural stakeholders to prioritize diversity as well as efficiency, both within agricultural landscapes and the biocontrol marketplace.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tree.2023.01.012DOI Listing

Publication Analysis

Top Keywords

biopesticide resistance
8
resistance evolution
8
resistance
6
increasing ecological
4
ecological heterogeneity
4
heterogeneity constrain
4
constrain biopesticide
4
evolution microbial
4
microbial biopesticides
4
biopesticides living
4

Similar Publications

The role of personal protective equipment (PPE) in protecting against exposure to infectious agents and toxic chemicals is well-established. However, the global surge in PPE demand during the pandemic exposed challenges, including shortages and environmental impacts from disposable waste. Developing effective, scalable, and sustainable decontamination methods for the reuse of PPE is essential.

View Article and Find Full Text PDF

Metabolic and microbial responses of Ceratitis capitata to essential oil-based nano-emulsions: Implications for pest management.

Pestic Biochem Physiol

November 2025

Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones científicas, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain. Electronic address:

Essential oils (EOs) are a promising alternative to conventional pesticides, but some challenges like high volatility, poor water solubility, and rapid degradation limit their use in Integrated Pest Management (IPM). To overcome these limitations, this study aimed to develop garlic, eucalyptus, and clove EO-based nano-emulsions (EO-NEs) in a bait treatment format through the high-pressure microfluidization technique and investigated the biological activities against Ceratitis capitata. In addition, the adverse effects of the most promising nano-emulsion were evaluated towards a non-target parasitoid Anagaspis daci.

View Article and Find Full Text PDF

RNA interference (RNAi) is an endogenous eukaryote viral defence mechanism representing a unique form of post-transcriptional gene silencing that can be induced via the exongenous application of dsRNA. Due to its high specificity, dsRNA-based biopesticides are being developed to control pest insects. Whilst many lepidopteran species are recalcitrant to RNAi, Tuta absoluta, a polyphagous insect responsible for extensive crop damage, is sensitive.

View Article and Find Full Text PDF

Development and efficacy of dsRNA pesticides targeting the Colorado potato beetle with enhanced stability via chitosan formulations.

Pestic Biochem Physiol

November 2025

Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plant, Institute for Biosafety in Plant Biotechnology, 06484 Quedlinburg, Germany. Electronic address:

The Colorado potato beetle (CPB, Leptinotarsa decemlineata) is a major pest of solanaceous crops and has developed resistance to many conventional insecticides, highlighting the need for novel, environmentally sustainable control strategies. In this study, we evaluated the efficacy of RNA interference (RNAi) targeting the proteasome subunit β5 (PSMB5) gene as a biopesticide approach against CPB larvae. Double-stranded RNA (dsRNA) targeting PSMB5 (a highly specific dsRNA) and Actin (a less specific dsRNA) dsRNA was synthesized and applied via leaf dip assays, either in naked form or formulated with chitosan nanoparticles.

View Article and Find Full Text PDF

Asthma-OSA Overlap Syndrome: A Distinct Endophenotype?

Respir Med

September 2025

Department of Public Health and Infectious Diseases, Pulmonology Unit, Policlinico Umberto I, "Sapienza" University of Rome, 00185 Rome, Italy.

Purpose: Asthma and obstructive sleep apnea (OSA) are two respiratory diseases that often may coexist, resulting in Alternative Overlap Syndrome (aOVS), which is still underestimated and underdiagnosed.

Objectives: This state-of-art review aims to describe the current evidence on aOVS, including its pathophysiology, clinical, functional and therapeutic implications. A secondary objective is to assess whether aOVS can be identified as a distinct endophenotype needing personalized diagnostic and therapeutic strategies.

View Article and Find Full Text PDF