Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We studied the effect of side reactions on the reversibility of epoxy with thermoreversible Diels-Alder (DA) cycloadducts based on furan and maleimide chemistry. The most common side reaction is the maleimide homopolymerization which introduces irreversible crosslinking in the network adversely affecting the recyclability. The main challenge is that the temperatures at which maleimide homopolymerization can occur are approximately the same as the temperatures at which retro-DA (rDA) reactions depolymerize the networks. Here we conducted detailed studies on three different strategies to minimize the effect of the side reaction. First, we controlled the ratio of maleimide to furan to reduce the concentration of maleimide groups which diminishes the effects of the side reaction. Second, we applied a radical-reaction inhibitor. Inclusion of hydroquinone, a known free radical scavenger, is found to retard the onset of the side reaction both in the temperature sweep and isothermal measurements. Finally, we employed a new trismaleimide precursor that has a lower maleimide concentration and reduces the rate of the side reaction. Our results provide insights into how to minimize formation of irreversible crosslinking by side reactions in reversible DA materials using maleimides, which is important for their application as novel self-healing, recyclable, and 3D-printable materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007558 | PMC |
http://dx.doi.org/10.3390/polym15051106 | DOI Listing |