Publications by authors named "John D McCoy"

We studied the effect of side reactions on the reversibility of epoxy with thermoreversible Diels-Alder (DA) cycloadducts based on furan and maleimide chemistry. The most common side reaction is the maleimide homopolymerization which introduces irreversible crosslinking in the network adversely affecting the recyclability. The main challenge is that the temperatures at which maleimide homopolymerization can occur are approximately the same as the temperatures at which retro-DA (rDA) reactions depolymerize the networks.

View Article and Find Full Text PDF

Molecular Dynamics (MD) simulations were carried out in a microcanonical ensemble to compute the Gruneisen parameter (denoted as γ) of a liquid of bead-spring chains having 10 beads/chain. γ was studied over a wide range of temperatures below and above the glass transition temperature. We found that the Gruneisen parameter varied in the range of 2.

View Article and Find Full Text PDF

Molecular dynamics simulations were carried out on free-standing liquid films of different thicknesses h using a bead-spring model of 10 beads per chain. The glass transition temperatures, T, of the various films were determined from plots of the internal energy versus temperature. We used these simulations to test the validity of our earlier conjecture that the glass transition of a confined liquid could be approximated by pre-averaging over the non-uniform density profile of the film.

View Article and Find Full Text PDF

We have investigated the ion dynamics in lithium-neutralized 2-pentylheptanoic acid, a small molecule analogue of a precise poly(ethylene-co-acrylic acid) lithium ionomer. Atomistic molecular dynamics simulations were performed in an external electric field. The electric field causes alignment of the ionic aggregates along the field direction.

View Article and Find Full Text PDF

The diffusion coefficients of simple chain models are analyzed as a function of packing fraction, η, and as a function of a parameter C that is the density raised to a power divided by temperature to look at scalar metrics to find master curves. The central feature in the analysis is the mapping onto an effective hard site diameter, d. For the molecular models lacking restrictions on dihedral angle (e.

View Article and Find Full Text PDF

Nonlinear dynamics of a simple bead-spring glass-forming polymer were studied with molecular dynamics simulations. The energy response to sinusoidal variations in the temperature was tracked in order to evaluate the dynamic heat capacity. The amplitude dependence of the response is the focus of the current paper where pronounced nonlinear behavior is observed for large amplitudes in the temperature "driving force.

View Article and Find Full Text PDF

The dynamic heat capacity of a simple polymeric, model glassformer was computed using molecular dynamics simulations by sinusoidally driving the temperature and recording the resultant energy. The underlying potential energy landscape of the system was probed by taking a time series of particle positions and quenching them. The resulting dynamic heat capacity demonstrates that the long time relaxation is the direct result of dynamics resulting from the potential energy landscape.

View Article and Find Full Text PDF

A recently developed methodology for the calculation of the dynamic heat capacity from simulation is applied to the east Ising model. Results show stretched exponential relaxation with the stretching exponent, beta, decreasing with decreasing temperature. For low temperatures, the logarithm of the relaxation time is approximately proportional to the inverse of the temperature squared, which is the theoretical limiting behavior predicted by theories of facilitated dynamics.

View Article and Find Full Text PDF

In this work, we examine the interaction between thin films composed of terminally anchored poly(N-isopropyl acrylamide) (PNIPAAm) immersed in water and test surfaces. Understanding this force of interaction can be important when using PNIPAAm surfaces in biotechnological applications such as biological cell cultures. The two novel contributions that are presented here are (1) the use of a recently developed self-consistent field (SCF) theory to predict the force-vs-distance profiles, and (2) the use of a modified polymer scaling theory to estimate the wet film thickness from experimental force-vs-distance profiles.

View Article and Find Full Text PDF

Phase transitions in polymeric surface films are studied with a simple model based on the van der Waals equation of state. Each chain is modeled by a single bead attached to the surface by an entropic-Hooke's law spring. The surface coverage is controlled by adjusting the chemical potential, and the equilibrium density profile is calculated with density functional theory.

View Article and Find Full Text PDF

Rotational relaxation functions of the end-to-end vector of short, freely jointed and freely rotating chains were determined from molecular dynamics simulations. The associated response functions were obtained from the one-sided Fourier transform of the relaxation functions. The Cole-Davidson function was used to fit the response functions with extensive use being made of Cole-Cole plots in the fitting procedure.

View Article and Find Full Text PDF

Dynamical properties of short freely jointed and freely rotating chains are studied using molecular dynamics simulations. These results are combined with those of previous studies, and the degree of rheological complexity of the two models is assessed. New results are based on an improved analysis procedure of the rotational relaxation of the second Legendre polynomials of the end-to-end vector in terms of the Kohlrausch-Williams-Watts (KWW) function.

View Article and Find Full Text PDF

The rotational dynamics of chemically similar systems based on freely jointed and freely rotating chains are studied. The second Legendre polynomial of vectors along chain backbones is used to investigate the rotational dynamics at different length scales. In a previous study, it was demonstrated that the additional bond-angle constraint in the freely rotating case noticeably perturbs the character of the translational relaxation away from that of the freely jointed system.

View Article and Find Full Text PDF

Simulation results for the diffusive behavior of polymer chain/penetrant systems are analyzed. The attractive range and flexibility of simple chain molecules were varied in order to gauge the effect on dynamics. In all cases, the dimensionless diffusion coefficient, D*, is found to be a smooth, single-valued function of the packing fraction, eta.

View Article and Find Full Text PDF

Until the mid-twentieth century, rarely would a patient question a doctor's diagnosis or proposed treatment. The "good bedside manner" was used to describe a doctor who made the effort to explain medical procedures to his patients. Recently, however, the legal profession has begun questioning medical practitioners about treatments that have gone wrong.

View Article and Find Full Text PDF

Density functional theory is applied to study properties of fully detailed, realistic models of polyethylene liquids near surfaces and compared to results from Monte Carlo simulations. When the direct correlation functions from polymer reference interaction site model (PRISM) theory are used as input, the theory somewhat underpredicts the density oscillations near the surface. However, good agreement with simulation is obtained with empirical scaling of the PRISM-predicted direct correlation functions.

View Article and Find Full Text PDF

A recently developed density functional theory (DFT) for tethered bead-spring chains is used to investigate colloidal forces for the good solvent case. A planar surface of tethered chains is opposed to a bare, hard wall and the force exerted on the bare wall is calculated by way of the contact density. Previously, the case of large wall separation was investigated.

View Article and Find Full Text PDF

We performed molecular dynamics simulations of chain systems to investigate general relationships between the system mobility and computed scalar quantities. Three quantities were found that had a simple one-to-one relationship with mobility: packing fraction, potential energy density, and the value of the static structure factor at the first peak. The chain center-of-mass mobility as a function of these three quantities could be described equally well by either a Vogel-Fulcher type or a power law equation.

View Article and Find Full Text PDF