A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices.

Nanomaterials (Basel)

Department of Electrical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetes mellitus is linked to both short-term and long-term health problems. Therefore, its detection at a very basic stage is of utmost importance. Research institutes and medical organizations are increasingly using cost-effective biosensors to monitor human biological processes and provide precise health diagnoses. Biosensors aid in accurate diabetes diagnosis and monitoring for efficient treatment and management. Recent attention to nanotechnology in the fast-evolving area of biosensing has facilitated the advancement of new sensors and sensing processes and improved the performance and sensitivity of current biosensors. Nanotechnology biosensors detect disease and track therapy response. Clinically efficient biosensors are user-friendly, efficient, cheap, and scalable in nanomaterial-based production processes and thus can transform diabetes outcomes. This article is more focused on biosensors and their substantial medical applications. The highlights of the article consist of the different types of biosensing units, the role of biosensors in diabetes, the evolution of glucose sensors, and printed biosensors and biosensing systems. Later on, we were engrossed in the glucose sensors based on biofluids, employing minimally invasive, invasive, and noninvasive technologies to find out the impact of nanotechnology on the biosensors to produce a novel device as a nano-biosensor. In this approach, this article documents major advances in nanotechnology-based biosensors for medical applications, as well as the hurdles they must overcome in clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10005622PMC
http://dx.doi.org/10.3390/nano13050867DOI Listing

Publication Analysis

Top Keywords

biosensors
10
nanotechnology biosensors
8
medical applications
8
glucose sensors
8
diabetes
5
nanotechnology-based approach
4
approach biosensor
4
biosensor application
4
application current
4
current diabetes
4

Similar Publications

Programmable Dual-Phase Electrochemical Biosensor Combines Homogeneous CRISPR/Cas12a Activation with Interfacial Poly-G Signaling for miRNA-21 Detection.

Anal Chem

September 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.

Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.

View Article and Find Full Text PDF

Pax-5a gene, as a nucleic acid biomarker closely associated with B-cell acute lymphoblastic leukemia (B-ALL), holds significant potential for early disease diagnosis. In this study, we developed a highly accurate and efficient "on-super on-off" photoelectrochemical (PEC) biosensor based on a dual-photoelectrode heterojunction system integrated with a multisphere cascade DNA amplification strategy. The designed heterojunction dual-photoelectrode platform, comprising a InO/CdS photoanode (on state) and an in situ-formed MIL-68(In)/InO (MIO) photocathode, effectively extends the electron-hole transport pathway, enhances photogenerated charge separation, and produces high-amplitude signal output (super on state), thereby providing a robust baseline for signal transduction.

View Article and Find Full Text PDF

Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.

View Article and Find Full Text PDF

Phosphatidic acid (PA) regulates lipid homeostasis and vesicular trafficking, yet high-affinity tools to study PA in live cells are lacking. We identified the lipin-like sequence of Nir1 (PILS-Nir1) as a candidate PA biosensor based on structural analysis of Nir1's LNS2 domain. Using liposome-binding assays and pharmacological and genetic manipulations in HEK293A cells expressing fluorescent PILS-Nir1, we found that while PILS-Nir1 binds PA and PIP2in vitro, only PA is necessary and sufficient for membrane localization in cells.

View Article and Find Full Text PDF

Rational design of tunable pH switches through shadow-strand hybridization-actuated displacement engineering.

Nucleic Acids Res

September 2025

Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.

Local pH variations play a pivotal role in numerous critical biological processes. However, achieving the tunability and selectivity of pH detection remains a challenge. Here, we present a DNA-based strategy that enables programmable and selective pH responses, which is termed shadow-strand hybridization-actuated displacement engineering (SHADE).

View Article and Find Full Text PDF