Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Increasing evidence suggests that natural antisense transcriptional lncRNAs regulate their adjacent coding genes to mediate diverse aspects of biology. Bioinformatics analysis of the previously identified antiviral gene ZNFX1 revealed neighboring lncRNA ZFAS1 transcribed on the opposite strand from ZNFX1. Whether ZFAS1 exerts antiviral function via regulating the dsRNA sensor ZNFX1 is unknown. Here we found that ZFAS1 was upregulated by RNA and DNA viruses and type I IFNs (IFN-I) dependent on Jak-STAT signaling, similar to the transcription regulation of ZNFX1. Knockdown of endogenous ZFAS1 partially facilitated viral infection, while ZFAS1 overexpression showed opposite effects. In addition, mice were more resistant to VSV infection with the delivery of human ZFAS1. We further observed that ZFAS1 knockdown significantly inhibited IFNB1 expression and IFR3 dimerization, whereas ZFAS1 overexpression positively regulated antiviral innate immune pathways. Mechanistically, ZFAS1 positively regulated ZNFX1 expression and antiviral function by enhancing the protein stability of ZNFX1, thereby establishing a positive feedback loop to enhance antiviral immune activation status. In short, ZFAS1 is a positive regulator of antiviral innate immune response via regulating its neighbor gene ZNFX1, adding new mechanistic insight into lncRNA-mediated regulation of signaling in innate immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmv.28637DOI Listing

Publication Analysis

Top Keywords

antiviral innate
12
innate immune
12
zfas1
10
znfx1
9
gene znfx1
8
antiviral function
8
zfas1 overexpression
8
positively regulated
8
antiviral
7
znfx1 antisense
4

Similar Publications

Crayfish IMD responds rapidly to WSSV infection and the activated IMD-Relish-AMPs pathway inhibits viral replication.

Fish Shellfish Immunol

September 2025

Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China. Electronic address:

One of the key innate immune pathways in invertebrates is the immune deficiency (IMD) signaling pathway, which effectively combats Gram-negative bacterial infections. In insects, the IMD pathway is involved in the defense against certain viral infections. However, the functional role of the IMD pathway in antiviral immunity remains incompletely characterized in crustaceans.

View Article and Find Full Text PDF

PNMA4 enhances anti-RNA virus immunity by promoting RIG-I signaling pathway.

Int Immunopharmacol

September 2025

Pharmacy of College, Hunan University of Chinese Medicine, Changsha, China,; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China; Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumo

Mitochondria play a crucial role as a hub for innate immune signal transduction, with mitochondrial antiviral signaling protein (MAVS) being a key regulator in the activation of interferon-β (IFN-β) production. It is essential for MAVS to initiate innate antiviral responses against RNA viruses, contributing to the host's defense mechanisms. In this study, we identified the mitochondrial protein Paraneoplastic Ma Family 4 (PNMA4/MOAP1) as a MAVS-interacting protein by using proximity-based labeling technology in THP-1 and discovered that it could enhance retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) signaling pathway.

View Article and Find Full Text PDF

The role of cholesterol metabolism in antiviral immunity has been established, but if and how this cholesterol-mediated immunometabolism can be regulated by specific small molecules is of particular interest in the quest for novel antiviral therapeutics. Here, we first demonstrate that NPC1 is the key cholesterol transporter for suppressing viral replication by changing cholesterol metabolism and triggering the innate immune response via systemic analyses of all possible cholesterol transporters. We then use the Connectivity Map (CMap), a systematic methodology for identifying functional connections between genetic perturbations and drug actions, to screen NPC1 inhibitors, and found that bis-benzylisoquinoline alkaloids (BBAs) exhibit high efficacy in the inhibition of viral infections.

View Article and Find Full Text PDF

Expression of metabolic genes in NK cells is associated with clinical outcomes in patients with severe COVID-19: a brief report.

Front Cell Infect Microbiol

September 2025

Universidad Autónoma de Nuevo León, Servicio y Departamento de Inmunología, Facultad de Medicina, Monterrey, NL, Mexico.

Natural killer (NK) cells are innate lymphocytes with cytotoxic activity against tumors and viruses. The pandemic of the coronavirus disease 2019 (COVID-19) has increased the investigation of their role in disease severity. However, their functional status and modulators remain controversial.

View Article and Find Full Text PDF

Enhanced ISGylation via USP18 Isopeptidase Inactivation Fails to Mitigate the Inflammatory or Functional Course of Coxsackievirus B3-Induced Myocarditis.

Cell Physiol Biochem

September 2025

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, 10117 Berlin, Germany.

Background/aims: The ubiquitin-like protein ISG15 and its covalent conjugation to substrates (ISGylation) represent a critical interferon (IFN)-induced antiviral mechanism. USP18 is an ISG15-specific isopeptidase and a key negative regulator of type I IFN signaling. While inactivation of USP18's catalytic activity enhances ISGylation and promotes viral resistance, its role in modulating inflammation and cardiac function during CVB3-induced myocarditis remains unclear.

View Article and Find Full Text PDF