Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Alterations in expression and activity of human receptor tyrosine kinases (RTKs) are associated with cancer progression and in response to therapeutic intervention.

Methods: Thus, protein abundance of 21 RTKs was assessed in 15 healthy and 18 cancerous liver samples [2 primary and 16 colorectal cancer liver metastasis (CRLM)] matched with non-tumorous (histologically normal) tissue, by a validated QconCAT-based targeted proteomic approach.

Results: It was demonstrated, for the first time, that the abundance of EGFR, INSR, VGFR3 and AXL, is lower in tumours relative to livers from healthy individuals whilst the opposite is true for IGF1R. EPHA2 was upregulated in tumour compared with histologically normal tissue surrounding it. PGFRB levels were higher in tumours relative to both histologically normal tissue surrounding tumour and tissues taken from healthy individuals. The abundances of VGFR1/2, PGFRA, KIT, CSF1R, FLT3, FGFR1/3, ERBB2, NTRK2, TIE2, RET, and MET were, however, comparable in all samples. Statistically significant, but moderate correlations were observed (Rs > 0.50, p < 0.05) for EGFR with INSR and KIT. FGFR2 correlated with PGFRA and VGFR1 with NTRK2 in healthy livers. In non-tumorous (histologically normal) tissues from cancer patients, there were correlations between TIE2 and FGFR1, EPHA2 and VGFR3, FGFR3 and PGFRA (p < 0.05). EGFR correlated with INSR, ERBB2, KIT and EGFR, and KIT with AXL and FGFR2. In tumours, CSF1R correlated with AXL, EPHA2 with PGFRA, and NTRK2 with PGFRB and AXL. Sex, liver lobe and body mass index of donors had no impact on the abundance of RTKs, although donor age showed some correlations. RET was the most abundant of these kinases in non-tumorous tissues (~35%), while PGFRB was the most abundant RTK in tumours (~47%). Several correlations were also observed between the abundance of RTKs and proteins relevant to drug pharmacokinetics (enzymes and transporters).

Discussion: DiscussionThis study quantified perturbation to the abundance of several RTKs in cancer and the value generated in this study can be used as input to systems biology models defining liver cancer metastases and biomarkers of its progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986493PMC
http://dx.doi.org/10.3389/fonc.2023.1010563DOI Listing

Publication Analysis

Top Keywords

abundance rtks
16
histologically normal
16
normal tissue
12
receptor tyrosine
8
tyrosine kinases
8
colorectal cancer
8
cancer liver
8
liver metastasis
8
non-tumorous histologically
8
egfr insr
8

Similar Publications

Unlabelled: The RAF kinases are central links between RAS, once activated by receptor tyrosine kinases (RTKs), and the extracellular signal-regulated kinases (ERK). In many cancer cells, RAFs are the least abundantly expressed RTK-ERK pathway proteins and can be present at just hundreds of copies per cell at the plasma membrane, but the consequences of limited RAF expression are unclear. By developing continuum and stochastic computational models of the epidermal growth factor receptor (EGFR)-ERK pathway, we showed that low RAF abundance creates stoichiometric bottlenecks between RTKs and ERK with concomitant stochastic RAF dynamics that propagate to weakly expressed downstream pathway proteins.

View Article and Find Full Text PDF

Purpose Receptor tyrosine kinase (RTK) concentrations on the plasma membrane correlate with angiogenic functions in vitro and in rodent models. The intracellular RTK pool also regulates plasma membrane receptor availability and signaling pathways. Organs have specialized angiogenic functions essential to their distinct roles, supporting the hypothesis that plasma membrane and intracellular RTK concentrations vary across endothelial cells (ECs) from different organs.

View Article and Find Full Text PDF
Article Synopsis
  • Incessant ovulation contributes to ovarian high-grade serous carcinomas (HGSC), which primarily arise from the fallopian tube epithelium (FTE), and receptor tyrosine kinase (RTK) ligands play a key role in this process.
  • A study investigated follicular fluid exosomes from women undergoing in vitro fertilization to identify RTK ligands and their impact on FTE cells, using various RTK inhibitors.
  • The findings revealed that FF exosomes were rich in transformative abilities and essential EGFR ligands, promoting cell growth and migration, indicating their significant contribution to HGSC development.
View Article and Find Full Text PDF

Receptor tyrosine kinases (RTKs) regulate many cellular functions and are important targets in pharmaceutical development, particularly in cancer treatment. EGFR and EphA2 are two key RTKs that are associated with oncogenic phenotypes. Several studies have reported functional interplay between these receptors, but the mechanism of interaction is still unresolved.

View Article and Find Full Text PDF

Receptor tyrosine kinase (RTK) overexpression is linked to the development and progression of multiple cancers. RTKs are classically considered to initiate cytoplasmic signalling pathways via ligand-induced tyrosine phosphorylation, however recent evidence points to a second tier of signalling contingent on interactions mediated by the proline-rich motif (PRM) regions of non-activated RTKs. The presence of PRMs on the C-termini of >40 % of all RTKs and the abundance of PRM-binding proteins encoded by the human genome suggests that there is likely to be a large number of previously unexplored interactions which add to the RTK intracellular interactome.

View Article and Find Full Text PDF