Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cadmium (Cd) is a serious threat for environmental sustainability as it can be taken up quickly by plants and transported to the food chain of living organisms. It alters plants' metabolic and physiological activities and causes yield loss, thereby, enhancing plant tolerance to Cd stress is of utmost essential. Therefore, an experiment was executed to investigate the potential role of Ascophyllum nodosum extract (ANE) and moringa (Moringa oleifera) leaf extract (MLE) to confer Cd tolerance in rice (Oryza sativa cv. BRRI dhan89). Thirty-five-day-old seedling was subjected to Cd stress (50 mg kg CdCl) alone and in a combination of ANE (0.25%) or MLE (0.5%) in a semi-controlled net house. Exposure to Cd resulted in accelerated production of reactive oxygen species, enhanced lipid peroxidation, and disrupted antioxidant defense and glyoxalase system, thus retarded plant growth, biomass production, and yield attributes of rice. On the contrary, the supplementation of ANE or MLE enhanced the contents of ascorbate and glutathione, and the activities of antioxidant enzymes such as ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione reductase, glutathione peroxidase, and catalase. Moreover, supplementation of ANE and MLE enhanced the activities of glyoxalase I and glyoxalase II which prevented the overgeneration of methylglyoxal in Cd stressed rice plants. Thus, because of ANE and MLE addition Cd-induced rice plants showed a noticeable declination in membrane lipid peroxidation, hydrogen peroxide generation, and electrolyte leakage, whereas improved water balance. Furthermore, the growth and yield attributes of Cd-affected rice plants were improved with the supplementation of ANE and MLE. All the studied parameters indicates the potential role of ANE and MLE in mitigating Cd stress in rice plants through improving the physiological attributes, modulating antioxidant defense and glyoxalase system.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-26251-7DOI Listing

Publication Analysis

Top Keywords

ane mle
20
rice plants
16
supplementation ane
12
ascophyllum nodosum
8
moringa oleifera
8
stress rice
8
potential role
8
lipid peroxidation
8
antioxidant defense
8
defense glyoxalase
8

Similar Publications

Cadmium (Cd) is a serious threat for environmental sustainability as it can be taken up quickly by plants and transported to the food chain of living organisms. It alters plants' metabolic and physiological activities and causes yield loss, thereby, enhancing plant tolerance to Cd stress is of utmost essential. Therefore, an experiment was executed to investigate the potential role of Ascophyllum nodosum extract (ANE) and moringa (Moringa oleifera) leaf extract (MLE) to confer Cd tolerance in rice (Oryza sativa cv.

View Article and Find Full Text PDF

Diffusion processes on trees are commonly used in evolutionary biology to model the joint distribution of continuous traits, such as body mass, across species. Estimating the parameters of such processes from tip values presents challenges because of the intrinsic correlation between the observations produced by the shared evolutionary history, thus violating the standard independence assumption of large-sample theory. For instance (Ho and Ané, Ann Stat 41:957-981, 2013) recently proved that the mean (also known in this context as selection optimum) of an Ornstein-Uhlenbeck process on a tree cannot be estimated consistently from an increasing number of tip observations if the tree height is bounded.

View Article and Find Full Text PDF