Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Due to the variety, chemical composition and complex structure, the quality control of Bupleuri Radix (BR) is a challenging task. There are still many trace compounds in BR that are difficult to extract and detect.

Objective: To develop an innovative method of trisiloxane surfactant vesicles ultrasonic extraction (TSVUE) combined with ultrahigh-performance liquid chromatography tandem mass spectrometry for the identification from Bupleurum chinense DC. (BC) to Bupleurum scorzonerifolium Willd (BS) based on metabolomics.

Methods: Based on extraction effect for BR, five different types of surfactants vesicles were prepared and compared. Then, a single-factor test and a response surface methodology study were adopted to obtain the optimal conditions for the surfactant vesicles ultrasonic extraction method. Finally, a non-targeted metabolomics method with information dependent acquisition mode was performed to analyse differential metabolites in BC and BS.

Results: Sugar-based surfactant containing trisiloxane [N-3-propyl-methyltrisiloxane-N-glucoheptonamne (Si(3)N-GHA)] displayed higher extraction efficiency compared to other types of surfactants when it comes to being used in pretreatment methods. And a TSVUE method was established and optimised. In total, 131 constituents were identified in two BR herbs, of which 35 were unreported, and 11 were characterised as chemical markers.

Conclusions: This method provides promising perspectives for rapidly identifying trace compounds in complex systems of traditional Chinese medicine (TCM), as well as for laying the foundation in the identification of similar herbs from the same species. Meanwhile, these findings serve as a promising application of trisiloxane surfactant vesicles in the extraction field of TCM.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pca.3217DOI Listing

Publication Analysis

Top Keywords

surfactant vesicles
16
trisiloxane surfactant
12
vesicles ultrasonic
12
ultrasonic extraction
12
extraction method
8
combined ultrahigh-performance
8
ultrahigh-performance liquid
8
liquid chromatography
8
chromatography tandem
8
tandem mass
8

Similar Publications

Pulmonary surfactant protein SP-C regulates lipid vesicle uptake by alveolar type II cells and macrophages: Role of lipids, palmitoylation, and environment.

Biochim Biophys Acta Mol Cell Biol Lipids

September 2025

Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain; Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain. Electronic

Pulmonary surfactant protein C (SP-C) may play a key role in alveolar homeostasis by modulating vesicle uptake in alveolar cells. This study explores how SP-C regulates internalization of model unilamellar lipid vesicles by type II alveolar epithelial cells (AECII) and alveolar macrophages (AMϕ), focusing on the effect of lipid composition, palmitoylation state, and interactions with external stimuli like lipopolysaccharides (LPS) or the other hydrophobic surfactant protein SP-B. Using fluorescence-based techniques, we demonstrated that SP-C enhances vesicle uptake in a lipid-dependent manner.

View Article and Find Full Text PDF

The study of the self-assembly of surfactants in aqueous solutions, though a traditional field, remains fascinating and full of novelty. In this article, the anionic perfluorodecanoic acid surfactant (PFA) is separately complexed with three hydroxyalkylamines (monoethanolamine (MEA), diethylamine (DEA), and triethanolamine (TEA)) in aqueous solutions. The transformation of aggregate morphologies from spherical unilamellar to nanotubes and then to spherical bilamellar is observed at room temperature, which is confirmed by cryo-transmission electron microscopy (cryo-TEM).

View Article and Find Full Text PDF

Decellularized tissues are used as biomaterials for transplantation. Many decellularized tissues in clinical applications are prepared using surfactants; however, we have developed a new decellularization method that uses subcritical dimethyl ether (DME) instead of surfactants. Subcritical DME perfusion is usually used for lipid extraction; therefore, by perfusing tissues with subcritical DME, phospholipid cell membranes may be destroyed.

View Article and Find Full Text PDF

The ATP-binding cassette subfamily A member 3 (ABCA3) protein on the limiting membrane of lamellar bodies in alveolar type 2 (AT2) cells transports phospholipids required for pulmonary surfactant assembly. ABCA3 deficiency results from biallelic pathogenic variants in and causes progressive neonatal respiratory failure or childhood interstitial lung disease (chILD). Supportive/compassionate care or lung transplantation are the only current definitive treatments for ABCA3 deficiency and progressive respiratory failure.

View Article and Find Full Text PDF

Capturing the native structure of membrane proteins using vesicles.

Proc Natl Acad Sci U S A

September 2025

Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.

Membrane proteins play crucial roles in numerous biological processes and are important drug targets. However, structural studies of membrane proteins often rely on solubilization with detergents, which may not accurately reflect their native states in a cellular context. Additionally, identifying suitable detergents for individual membrane proteins can be a detailed and time-consuming process.

View Article and Find Full Text PDF