98%
921
2 minutes
20
Thermomechanical processing such as annealing is one of the main methods to tailor the mechanical properties of materials, however, much is unknown about the reorganization of dislocation structures deep inside macroscopic crystals that give rise to those changes. Here, we demonstrate the self-organization of dislocation structures upon high-temperature annealing in a mm-sized single crystal of aluminum. We map a large embedded 3D volume ([Formula: see text] [Formula: see text]m[Formula: see text]) of dislocation structures using dark field X-ray microscopy (DFXM), a diffraction-based imaging technique. Over the wide field of view, DFXM's high angular resolution allows us to identify subgrains, separated by dislocation boundaries, which we identify and characterize down to the single-dislocation level using computer-vision methods. We demonstrate how even after long annealing times at high temperatures, the remaining low density of dislocations still pack into well-defined, straight dislocation boundaries (DBs) that lie on specific crystallographic planes. In contrast to conventional grain growth models, our results show that the dihedral angles at the triple junctions are not the predicted 120[Formula: see text], suggesting additional complexities in the boundary stabilization mechanisms. Mapping the local misorientation and lattice strain around these boundaries shows that the observed strain is shear, imparting an average misorientation around the DB of [Formula: see text] 0.003 to 0.006[Formula: see text].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992398 | PMC |
http://dx.doi.org/10.1038/s41598-023-30767-w | DOI Listing |
ACS Appl Mater Interfaces
September 2025
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Here, Pb/Y codoped SnSe nanorods were fabricated via a bottom-up, cost-effective hydrothermal method. The formation of nanorod structures generating high-density grain boundaries significantly enhances phonon scattering, serving as the primary mechanism for lattice thermal conductivity reduction. Furthermore, Y-element enrichment regions, nanoprecipitates, and dense dislocation networks provide additional phonon scattering that further suppresses phonon transport.
View Article and Find Full Text PDFPain Med
September 2025
Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA.
Objective: Introduced in 1970s, Spinal Cord Stimulator (SCS) devices have played a crucial role in managing a wide range of complex and refractory chronic pain, particularly back/leg pain as well as neuropathic pain. Currently, two primary types of leads, cylindrical and paddle leads, are prevalent in pain management. While both effectively alleviate pain, cylindrical leads, due to their small size, are susceptible to movement and migration as well as a smaller surface area for coverage, leading to device displacement and failure to provide pain relief.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695-7909, United States.
Gallium oxide (GaO) is distinguished in the electronics field for its ultrawide bandgap, high breakdown field, and transparency to visible and infrared light, making it highly attractive for sensor applications in harsh environments. This study investigates the evolution of defects in GaO under ion irradiation, annealing, and their combined effects, with a unique focus on in situ transmission electron microscopy (TEM) observations. We examined three electron-transparent GaO lamellas (samples A, B, and C) under distinct conditions: Sample A was subjected to Kr ion irradiation up to 15.
View Article and Find Full Text PDFJ Clin Orthop Trauma
November 2025
Department of Biostatistics, AIIMS, Delhi, India.
Background: The Direct Anterior Approach (DAA) in Total Hip Arthroplasty (THA) is gaining popularity due to faster recovery and lower dislocation rates than the Posterior Approach (PA). However, its adoption in Asia remains limited. This systematic review compares functional, radiological, and clinical outcomes of DAA and PA in Asian populations.
View Article and Find Full Text PDFSci Rep
September 2025
Shanghai Nanotechnology and Industry Development Promotion Center, Shanghai, 200237, People's Republic of China.
A novel Corrax (CX) stainless steel was fabricated using the Selective Laser Melting (SLM) process. This study examined the influence of heat treatment processes on the microstructure and mechanical properties of CX stainless steel. Results indicate that SLM-fabricated CX samples mainly consist of martensite and residual austenite, with tensile strength and hardness of 1124 MPa and 337.
View Article and Find Full Text PDF