A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Fresh One-Step Spray Pyrolysis Approach to Prepare Nickel-Rich Cathode Material for Lithium-Ion Batteries. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Ni-rich layered cathode material LiNiCoMnO (NCM811) with high specific capacity and acceptable rate performance is one of the key cathode materials for high-energy-density lithium-ion batteries. Coprecipitation, the widely utilized method in the precursor synthesis of NCM811 materials, however, suffers long synthetic processes and challenges in uniform element distribution. The spray pyrolysis method is able to prepare oxide precursors in seconds where all transition-metal elements are well distributed, but the difficulty of lithium distribution will also arise when the lithium salts are added in the subsequent sintering process. Herein, a fresh one-step spray pyrolysis approach is proposed for preparing high-performance NCM811 cathode materials by synthesizing lithium-contained precursors in which all elements are well distributed at a molecular level. The precursors with folded morphology and exceptional uniformity are successfully obtained at a low pyrolysis temperature of 300 °C by an acetate system. Furthermore, the final products commendably inherit the folded morphology of the precursors and exhibit excellent cyclic retentions of 94.6% and 88.8% after 100 and 200 cycles at 1 C (1 C = 200 mA g), respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c00607DOI Listing

Publication Analysis

Top Keywords

spray pyrolysis
12
fresh one-step
8
one-step spray
8
pyrolysis approach
8
cathode material
8
lithium-ion batteries
8
cathode materials
8
elements well
8
well distributed
8
folded morphology
8

Similar Publications