98%
921
2 minutes
20
Introduction: We aimed to describe the epidemiological situation during the Omicron variant circulation in light of genomic surveillance data in Martinique, a territory with low vaccination rates.
Patients And Methods: We exploited COVID-19 national databases of virological tests, for the collection of hospital data and for the sequencing data from December 13, 2021 to July 11, 2022.
Results: Three prevailing sub-lineages of Omicron have been identified in Martinique (BA.1, BA.2, BA.5) during this period causing three distinct waves characterized by an increase in virological indicators compared to previous waves, with moderate severity in the first and last waves, caused by BA.1 and BA.5, respectively.
Conclusion: The SARS-CoV-2 outbreak is still progressing in Martinique. Genomic surveillance system in this overseas territory must be continued for rapid detection of emerging variants/sub-lineages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977121 | PMC |
http://dx.doi.org/10.1016/j.idnow.2023.104690 | DOI Listing |
J Neurooncol
September 2025
Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.
Purpose: Breast cancer (BC) is the most frequent cancer among women and the second leading cause of central nervous system (CNS) metastases. While the epidemiology of CNS metastases from BC has been well described, little is known about the treatment patterns and outcomes of young women < 40 years of age with BC that is metastatic to the CNS.
Methods: In this retrospective analysis, we identified patients with metastatic breast cancer (MBC) to the CNS who were treated at the Sunnybrook Odette Cancer Center, Toronto, Canada between 2008 and 2018.
J Cancer Res Clin Oncol
September 2025
Institute for Community Medicine, Section Epidemiology of Health Care and Community Health, University Medicine Greifswald, Greifswald, Germany.
Purpose: The German sector-based healthcare system poses a major challenge to continuous patient monitoring and long-term follow-up, both essential for generating high-quality, longitudinal real-world data. The national Network for Genomic Medicine (nNGM) bridges the inpatient and outpatient care sectors to provide comprehensive molecular diagnostics and personalized treatment for non-small cell lung cancer (NSCLC) patients in Germany. Building on the established nNGM infrastructure, the DigiNet study aims to evaluate the impact of digitally integrated, personalized care on overall survival (OS) and the optimization of treatment pathways, compared to routine care.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2025
The University of Leicester Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, Leicester, United Kingdom.
Purpose: To define the genetic architecture of foveal morphology and explore its relevance to foveal hypoplasia (FH), a hallmark of developmental macular disorders.
Methods: We applied deep-learning algorithms to quantify foveal pit depth from central optical coherence tomography (OCT) B-scans in 61,269 UK Biobank participants. A genome-wide association study (GWAS) was conducted using REGENIE, adjusting for age, sex, height, and ancestry.
Brain Behav
September 2025
Department of Thoracic Surgery II, Department of Lung Transplantation, Organ Transplantation Center, the First Hospital of Jilin University, Changchun, China.
Background: Ischemic stroke (IS) treatment remains a significant challenge. This study aimed to identify potential druggable genes for IS using a systematic druggable genome-wide Mendelian Randomization (MR) analysis.
Methods: Two-sample MR analysis was conducted to identify the causal association between potential druggable genes and IS.
Vasc Health Risk Manag
September 2025
Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
Purpose: Hypertension (HTN) is a complex disorder regulated by multiple physiological systems. Each individual's underlying genetic architecture strongly influences inter-individual variability in therapeutic responses to HTN. Consequently, identifying candidate genes that contribute to the genetic basis of HTN remains a significant challenge.
View Article and Find Full Text PDF