98%
921
2 minutes
20
Many resistance genes deployed against pathogens in crops are intracellular nucleotide-binding (NB) leucine-rich repeat (LRR) receptors (NLRs). The ability to rationally engineer the specificity of NLRs will be crucial in the response to newly emerging crop diseases. Successful attempts to modify NLR recognition have been limited to untargeted approaches or depended on previously available structural information or knowledge of pathogen-effector targets. However, this information is not available for most NLR-effector pairs. Here, we demonstrate the precise prediction and subsequent transfer of residues involved in effector recognition between two closely related NLRs without their experimentally determined structure or detailed knowledge about their pathogen effector targets. By combining phylogenetics, allele diversity analysis, and structural modeling, we successfully predicted residues mediating interaction of Sr50 with its cognate effector AvrSr50 and transferred recognition specificity of Sr50 to the closely related NLR Sr33. We created synthetic versions of Sr33 that contain amino acids from Sr50, including Sr33, which gained the ability to recognize AvrSr50 with 12 amino-acid substitutions. Furthermore, we discovered that sites in the LRR domain needed to transfer recognition specificity to Sr33 also influence autoactivity in Sr50. Structural modeling suggests these residues interact with a part of the NB-ARC domain, which we named the NB-ARC latch, to possibly maintain the inactive state of the receptor. Our approach demonstrates rational modifications of NLRs, which could be useful to enhance existing elite crop germplasm. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561695 | PMC |
http://dx.doi.org/10.1094/MPMI-07-22-0154-R | DOI Listing |
Anat Sci Educ
September 2025
Human Anatomy, Vita-Salute San Raffaele University, Milan, Italy.
As emerging technologies reshape both the body and how we represent it, anatomical education stands at a threshold. Virtual dissection tools, AI-generated images, and immersive platforms are redefining how students learn anatomy, while real-world bodies are becoming hybridized through implants, neural interfaces, and bioengineered components. This Viewpoint explores what it means to teach human anatomy when the body is no longer entirely natural, and the image is no longer entirely real.
View Article and Find Full Text PDFGeroscience
September 2025
Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA) University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan, 3004, 1081 LA, Amsterdam, the Netherlands.
The increasing prevalence of overweight/obesity among the elderly has significant implications for oral health due to shared pathophysiological mechanisms. Despite its importance, comprehensive reviews on this topic remain limited. This study investigates the association between overweight/obesity and oral health outcomes in adults aged 55 and older.
View Article and Find Full Text PDFJ Clin Periodontol
September 2025
Department of Oral Medicine and Periodontology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
Background And Objective: Traditional and planimetric plaque indices rely on plaque-disclosing agents and cannot quantify three-dimensional (3D) structures of dental biofilms. We introduce a novel computer-assisted method for evaluating and visualising plaque volume using intraoral scans (IOSs).
Materials And Methods: This was a 4-day, non-brushing, plaque-regrowth study (n = 15).
FEBS J
September 2025
Department of Molecular Microbiology, John Innes Centre, Norwich, UK.
Understanding the molecular basis of regulated nitrogen (N) fixation is essential for engineering N-fixing bacteria that fulfill the demand of crop plants for fixed nitrogen, reducing our reliance on synthetic nitrogen fertilizers. In Azotobacter vinelandii and many other members of Proteobacteria, the two-component system comprising the anti-activator protein (NifL) and the Nif-specific transcriptional activator (NifA)controls the expression of nif genes, encoding the nitrogen fixation machinery. The NifL-NifA system evolved the ability to integrate several environmental cues, such as oxygen, nitrogen, and carbon availability.
View Article and Find Full Text PDFEncephale
September 2025
Laboratoire INTERPSY, université de Lorraine, Nancy, France; Hôpitaux de Saint-Maurice, Saint-Maurice, France. Electronic address:
Introduction: Adolescents supported by child protection services (CPS) represent a population exposed to repeated relational trauma that significantly increases the risk of developing complex trauma characterized by polymorphic symptomatology. The behavioral problems presented by adolescents followed by CPS may fit within this nosographic framework. They can lead to major difficulties in adapting to their environment, especially when the trajectory of polyvictimization is pronounced.
View Article and Find Full Text PDF