98%
921
2 minutes
20
Introduction: Bambara groundnut (BG) (Vigna subterranea [L.] Verdc) is an indigenous, resilient, but underutilized leguminous crop that occurs mostly as genetically heterogeneous landraces with limited information on the drought tolerant attributes. This study elucidates the associations between sequencing-based diversity array technology (DArTseq) and phenotypic character as well as differing indices related to drought tolerance in one hundred accessions of Bambara groundnut.
Methods: The field experiments were conducted at IITA research stations in Kano and Ibadan between 2016 and 2018 planting seasons. The experiments were arranged in randomised complete block design with three replications, under the different water regimes. The phenotypic traits evaluated was further to construct the dendrogram. Genome-wide association mapping was conducted based on 5927 DArTs loci with < 20% missing data.
Results And Discussions: The genome wide association study predicted drought tolerance in Bambara accessions for geometric mean productivity (GMP) and stress tolerance index (STI). TVSu-423 had the highest GMP and STI values (28.50, 2.40), while TVSu-2017 had the lowest at GMP (1.74) and STI (0.01) respectively. The relative water content (%) was significantly higher for accessions; TVSu-266 (60.35, 61.49), TVSu-2 (58.29, 53.94), and TVSu-411 (55.17, 58.92) in 2016/2017 and 2017/2018, respectively. The phenotypic characters studied delineated the accessions into two major clusters and five distinct sub-clusters, indicating variations across all the geographical locations. The 5,927 DArTseq genomic markers in association with STI further grouped the 100 accessions into two main clusters. TVSu-1897 from Botswana (Southern Africa) was in the first cluster, while the remaining 99 accessions from Western, Central, and Eastern Africa made up the second cluster. The eight significant Quantitative Trait Loci (QTLs) (24346377|F|0-22:A>G-22:A>G, 24384105|F|0-56:A>G33 :A> G, 24385643|F|0-53:G>C-53:G>C, 24385696|F|0-43:A>G-43:A>G, 4177257|F|0-44:A>T-44:A>T, 4182070|F|0-66:G>A-66:G>A, 4183483|F|0-24:G>A-24:G>A, 4183904|F|0-11:C>T-11:C>T) identified with Bonferroni threshold was in association with STI, indicative of variations under the drought-stressed condition. The observation of consistent SNPs in the 2016 and 2017 planting seasons, as well as in combination with the 2016 and 2017 planting seasons, led to the designation of these QTLs as significant. The drought selected accessions could form basis for hybridization breeding. The identified quantitative trait loci could be useful in marker-assisted selection in drought molecular breeding programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972976 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1104417 | DOI Listing |
Pestic Biochem Physiol
November 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China. Electronic ad
Mortierella spp. is emerging as a potential biocontrol agent against soil borne diseases due to its antagonistic effects on pathogens and strong environmental adaptability. However, the mechanisms by which it restructures rhizosphere microbial communities to achieve sustained pathogen suppression remain largely unresolved.
View Article and Find Full Text PDFWater Res
August 2025
Westlake Laboratory of Life Sciences and Biomedicine, Center for Infectious Disease Research, School of Life Sciences, Westlake University, Hangzhou 310024, China; Zhejiang Provincial Key Laboratory of Intelligent Low-Carbon Biosynthesis, Research Center for Industries of the Future, School of Engin
Livestock wastewater is a critical reservoir of antibiotic resistance genes (ARGs) that poses significant public health risks. This study comprehensively evaluated the seasonal dynamics and associated risks of ARGs in a full-scale livestock wastewater treatment plant using an integrated metagenomic and metatranscriptomic approach. The results showed that untreated livestock wastewater harbored high abundance (4.
View Article and Find Full Text PDFPlant Commun
September 2025
School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany. Electronic address:
The coordination of floral developmental stages with the environment is important for reproductive success and the optimization of crop yields. The timing of different developmental stages contributes to final yield potential with optimal adaptation enabling development to proceed without being impacted by seasonal weather events, including frosts or end of season drought. Here we characterise the role of FLOWERING LOCUS T 3 (FT3) in hexaploid bread wheat (Triticum aestivum) during the early stages of floral development.
View Article and Find Full Text PDFPest Manag Sci
September 2025
IRTA, Postharvest, Fruitcentre, Lleida, Spain.
Background: Almond blossom blight, caused by Monilinia spp., is a notable fungal disease associated with intensified crop management practices. In this study, we aimed to investigate the epidemiology of Monilinia spp.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan.
Odor problems in treated municipal wastewater are a concern, yet the sources and formation dynamics of these compounds within sewerage systems remain unclear. 2,4,6-trichloroanisole (2,4,6-TCA) is a key odorant in the effluents of municipal wastewater treatment plants (WWTPs). This study investigates the formation of 2,4,6-TCA through the conversion of its precursor, 2,4,6-trichlorophenol (2,4,6-TCP).
View Article and Find Full Text PDF