A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Toxic mechanism of the Mongolian medicine "Hunqile-7" based on metabonomics and the metabolism of intestinal flora. | LitMetric

Toxic mechanism of the Mongolian medicine "Hunqile-7" based on metabonomics and the metabolism of intestinal flora.

Toxicol Res (Camb)

Key Laboratory of Mongolian Research and Development Project in Ministry of Education, Inner Mongolia Minzu University, Tongliao 028000, China.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The traditional Mongolian medicine Hunqile-7 (HQL-7), which is mainly used to relieve pain in clinic, has certain toxicity. Therefore, toxicological investigation of HQL-7 is of great significance to its safety assessment. In this study, the toxic mechanism of HQL-7 was explored based on a combination of metabolomics and intestinal flora metabolism. UHPLC-MS was used to analyze the serum, liver and kidney samples of rats after intragastric administration of HQL-7. The decision tree and K Nearest Neighbor (KNN) model were established based on the bootstrap aggregation (bagging) algorithm to classify the omics data. After samples were extracted from rat feces, the high-throughput sequencing platform was used to analyze the 16s rRNA V3-V4 region of bacteria. The experimental results confirm that the bagging algorithm improved the classification accuracy. The toxic dose, toxic intensity, and toxic target organ of HQL-7 were determined in toxicity tests. Seventeen biomarkers were identified and the metabolism dysregulation of these biomarkers may be responsible for the toxicity of HQL-7 in vivo. Several kinds of bacteria was demonstrated to be closely related to the physiological indices of renal and liver function, indicating liver and kidney damage induced by HQL-7 may be related to the disturbance of these intestinal bacteria. Overall, the toxic mechanism of HQL-7 was revealed in vivo, which not only provides a scientific basis for the safe and rational clinical use of HQL-7, but also opens up a new field of research on big data for Mongolian medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972816PMC
http://dx.doi.org/10.1093/toxres/tfac081DOI Listing

Publication Analysis

Top Keywords

toxic mechanism
12
mongolian medicine
12
hql-7
9
intestinal flora
8
mechanism hql-7
8
liver kidney
8
bagging algorithm
8
toxic
6
mechanism mongolian
4
medicine "hunqile-7"
4

Similar Publications