98%
921
2 minutes
20
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic compounds of major concern that mainly accumulate in soils and sediments, and their extraction from environmental matrices remains a crucial step when determining the extent of contamination in soils and sediments. The objective of the present study was to compare the extraction of PAHs (phenanthrene, pyrene, chrysene, and benzo[a]pyrene) from spiked soil and sediment using supercritical fluid extraction (SFE) with ethanol as the modifier, microwave-assisted extraction (MAE), and eucalyptus oil-assisted extraction (EuAE). Recoveries of PAHs were comparable between the three methods, and >80% of applied pyrene, chrysene and benzo[a]pyrene were recovered. The most efficient method of extracting PAHs from naturally incurred soils with different levels of contamination was SFE. A longer extraction time was required for the EuAE method compared with SFE and MAE under optimized conditions. However, EuAE required lower extraction temperatures (15-20 °C) compared with SFE (80 °C) and MAE (110-120 °C), and consumed less solvent than SFE and MAE. Compared with hexane/acetone used in MAE, the use of ethanol in SFE and eucalyptus oil in EuAE can be considered as more sustainable approaches to efficiently extract PAHs from spiked/naturally contaminated soils and sediments. And, although less efficient for matrices containing higher carbon content, EuAE offered a cheap, low-tech approach to extracting PAHs. Environ Toxicol Chem 2023;42:982-994. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/etc.5593 | DOI Listing |
PLoS One
September 2025
Department of Research, Collections and Conservation, Environmental Archaeology and Materials Science, National Museum of Denmark, Kongens Lyngby, Denmark.
During the Late Bronze Age (ca. 11th-8th century BCE), far-reaching and extensive trade and exchange networks linked communities across Europe. The area around Seddin in north-western Brandenburg, Germany, has long been considered as at the core of one such networks.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Country College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China.
Introduction: The discrepancies in near-soil-surface hydrologic processes triggered by herbage spatial distribution pattern greatly influence the variation in hillslope erosion process. However, knowledge about the influence of herbage spatial distribution pattern on hillslope erosion is still limited.
Methods: In the current study, runoff plots (length × width × depth, 2 × 1 × 0.
J Environ Manage
September 2025
College of chemistry and chemical Engineering, Ocean University of China, Qingdao, China. Electronic address:
Tidal estuaries serve as critical zones for biogeochemical connectivity between terrestrial and oceanic ecosystems. With climate change magnifying the impact of flood events on riverine system, dissolved organic matter (DOM) cycling, the largest reactive elemental pool in ecosystems, in tidal estuaries tend to be more complex and remain poorly understood. To address this gap, the response of DOM dynamics to flood events in a typical tidal estuary was explored.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
December 2025
Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
Mar Pollut Bull
September 2025
Department of Chemical Engineering, Jadavpur University, Kolkata 700032, India. Electronic address:
This study presents the first attempt on plant biomonitoring of the polycyclic aromatic hydrocarbons (PAHs) pollution in East Kolkata Wetland (EKW), a Ramsar site in India, using Alternanthera ficoidea (L.). A polluted site, Captain Bheri (CB) and a control area, Kansabati River Basin (KRB) are chosen to compare the severity of the PAHs pollution of the wetland by examining wetland sediment and wetland plant parts (leaf, root, stem, rhizobium).
View Article and Find Full Text PDF