Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Mucin 1 (MUC1) is a transmembrane glycoprotein commonly expressed in epithelial cells with stable levels and polarized distribution. Their expression levels and spatial distribution abnormally altered during oncogenesis and play tumor-promoting roles synergistically. We herein propose a magnetic DNAzyme walker (MDW) for both in-situ imaging and sensitive detection of MUC1. This MDW was constructed by modifying specially designed track strands (TSs) and walking strands (WSs) on a streptavidin magnetic bead (SA-MB). The TSs contained cleavage sites for DNAzymes and were labeled with Cy3 at free ends. The WSs contained DNAzyme sequences and were firstly blocked by hybridizing with Cy5-labeled aptamers of MUC1. The DNAzymes were unlocked upon aptamers binding to MUC1 on cells. MDWs were then transferred to a buffer suitable for DNAzyme action, where the unlocked DNAzymes cleaved multiple TSs, releasing amplified Cy3-fragments, which were separated from the uncleaved ones by magnetic separation. In-situ imaging of MUC1 were achieved by the fluorescence of Cy5 on aptamers bound to MUC1. Sensitive detection of MUC1 were achieved by the amplified fluorescence of released Cy3. In-situ imaging and walker operation for detection were triggered by the same targets at the same time, ensuring the signals are real-time correlative. Moreover, MDWs' operation was separated from cells, reducing interference between imaging and detection. The proposed MDW offers a potential approach for comprehensive analysis of MUC1 in early diagnosis and progression assessment of tumor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.124374 | DOI Listing |