98%
921
2 minutes
20
Desiccation tolerance allows plant seeds to remain viable during desiccation and subsequent re-hydration. In this study, we tried to develop an experimental system to understand the difference between desiccation tolerant and desiccation sensitive radicle cells by examining excised embryonic axes after re-desiccation and subsequent imbibition under various regimes. Embryonic axes excised from soybean ( (L.) Merr.) seeds imbibed for 3 h to 15 h which remained attached to the cotyledons during imbibition would grow normally after 24 h of desiccation and re-imbibition on wet filter paper. By contrast, when the embryonic axes excised after 3 h imbibition of seeds were kept on wet filter paper for 12 h to 16 h, their growth was significantly retarded after 24 h of desiccation and subsequent re-imbibition. Numerous lipid droplets were observed lining the plasma membrane and tonoplasts in radicle cells of desiccation tolerant embryonic axes before and after desiccation treatment. By contrast, the lipid droplets lining the plasma membrane and tonoplasts became very sparse in radicle cells that were placed for longer times on wet filter paper before desiccation. We observed a clear correlation between the amount of lipid droplets lining plasma membranes and the ability to grow after desiccation and re-imbibition of the excised embryonic axes. In addition to the reduction of lipid droplets in the cells, a gradual increase in starch grains was observed. Large starch grains accumulated in the radicle cells of those axes that failed to grow further.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958736 | PMC |
http://dx.doi.org/10.3390/plants12040799 | DOI Listing |
Bioimpacts
August 2025
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
Introduction: Hepatocellular carcinoma (HCC) remains a major cause of cancer mortality, and effective therapeutic options are limited. MicroRNA‑372‑3p (miR‑372‑3p) has been implicated in HCC, yet its exact role is unclear.
Methods: We established miR‑372‑3p‑overexpressing HCC cell lines (HepG2, SNU‑449, JHH‑4) via lentiviral transduction.
Food Res Int
November 2025
National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China. Electronic address: chichang
This study aimed to analyze the amino acid composition and characterize the sequences of collagen peptides from Skipjack tuna bones (TBCPs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and further investigate the function and mechanism of action of TBCPs in nonalcoholic fatty liver disease (NAFLD). The results showed that TBCPs contain 16 types of amino acids, among which glycine is the most abundant, and hydrophobic amino acids account for 40.75 %.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Neuroscience, The Scripps Research Institute, San Diego, CA 92037.
Microglia regulate neuronal circuit plasticity. Disrupting their homeostatic function has detrimental effects on neuronal circuit health. Neuroinflammation contributes to the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD), with several microglial activation genes linked to increased risk for these conditions.
View Article and Find Full Text PDFAquac Nutr
August 2025
Guangdong Provincial Key Laboratories of Marine Biotechnology, Shantou University, Shantou 515063, China.
In mammals, cholesterol accumulation in tissues often results in health damage, such as oxidative stress. In contrast, the adverse effects of cholesterol accumulation on the physiological health of fish remain largely unexplored. The present study investigated the impacts of cholesterol accumulation on oxidative stress and the potential mechanisms involved in Nile tilapia ().
View Article and Find Full Text PDFAstrocytes, the predominant glial cells in the central nervous system (CNS), play a pivotal role in maintaining neuronal homeostasis and function. Accumulating evidence suggests that astrocytic dysfunction is closely associated with the pathogenesis of various neurological disorders, including neurodegenerative diseases, ischemic stroke (IS), epilepsy, and glioma. Lipid droplets (LDs), ubiquitous intracellular lipid storage organelles, exhibit metabolic abnormalities that are commonly observed in these neurological conditions, particularly in astrocytes, where LD metabolic dysregulation may serve as a critical link between glial dysfunction and neuronal damage.
View Article and Find Full Text PDF