A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Delineation of Genotype X Environment Interaction for Grain Yield in Spring Barley under Untreated and Fungicide-Treated Environments. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Barley ( L.) is the fourth most important cereal crop based on production and cultivated area. Biotic stresses, especially fungal diseases in barley, are devastating, incurring high possibilities of absolute yield loss. Identifying superior and stable yielding genotypes is crucial for accompanying the increasing barley demand. However, the identification and recommendation of superior genotypes is challenging due to the interaction between genotype and environment. Hence, the present investigation was aimed at evaluating the grain yield of different sets of spring barley genotypes when undergoing one of two treatments (no treatment and fungicide treatment) laid out in an alpha lattice design in six to seven locations for five years, through additive main effects and multiplicative interaction (AMMI), GGE biplot (genotype + genotype X environment), and stability analysis. The combined analysis of variance indicated that the environment was the main factor that contributed to the variation in grain yield, followed by genotype X environment interaction (GEI) effects and genotypic effects. Ten mega environments (MEs) with five MEs from each of the treatments harboured well-adapted, stable yielding genotypes. Exploiting the stable yielding genotypes with discreet use of the representative and discriminative environments identified in the present study could aid in breeding for the improvement of grain yield in spring barley genotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961658PMC
http://dx.doi.org/10.3390/plants12040715DOI Listing

Publication Analysis

Top Keywords

grain yield
16
genotype environment
12
spring barley
12
stable yielding
12
yielding genotypes
12
environment interaction
8
yield spring
8
barley genotypes
8
barley
6
genotypes
6

Similar Publications