98%
921
2 minutes
20
Selective antiadhesion antagonists of Uropathogenic (UPEC) type-1 Fimbrial adhesin (FimH) are attractive alternatives for antibiotic therapies and prophylaxes against acute or recurrent urinary tract infections (UTIs) caused by UPECs. A rational small library of FimH antagonists based on previously described -linked allyl α-D-mannopyranoside was synthesized using Heck cross-coupling reaction using a series of iodoaryl derivatives. This work reports two new members of FimH antagonist amongst the above family with sub nanomolar affinity. The resulting hydrophobic aglycones, including constrained alkene and aryl groups, were designed to provide additional favorable binding interactions with the so-called FimH "tyrosine gate". The newly synthesized -linked glycomimetic antagonists, having a hydrolytically stable anomeric linkage, exhibited improved binding when compared to previously published analogs, as demonstrated by affinity measurement through interactions by FimH lectin. The crystal structure of FimH co-crystallized with one of the nanomolar antagonists revealed the binding mode of this inhibitor into the active site of the tyrosine gate. In addition, selected mannopyranoside constructs neither affected bacterial growth or cell viability nor interfered with antibiotic activity. -linked mannoside antagonists were effective in decreasing bacterial adhesion to human bladder epithelial cells (HTB-9). Therefore, these molecules constituted additional therapeutic candidates' worth further development in the search for potent anti-adhesive drugs against infections caused by UPEC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962304 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15020527 | DOI Listing |
The rise of multidrug-resistant bacterial infections necessitates the discovery of novel antimicrobial strategies. Here, we show that protein design provides a generalizable means of generating new antimicrobials by neutralizing the function of bacterial adhesins, which are virulence factors critical in host-pathogen interactions. We designed high-affinity miniprotein binders to FimH and Abp1D/Abp2D chaperone usher pili adhesins from uropathogenic and , respectively, which are implicated in mediating both uncomplicated and catheter-associated urinary tract infections (UTI) responsible for significant morbidity and mortality worldwide.
View Article and Find Full Text PDFPLoS Biol
June 2025
Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
Glycoprotein 2 (GP2) and Uromodulin (UMOD) are considered as paralogs that share high sequence similarity and have similar antibacterial functions. UMOD are abundant as filaments in the urinary tract, and a high-mannose N-glycosylation site located on the N-terminal region protruding from UMOD filament core (referred to as branch) acts as an adhesion antagonist against pathogenic bacterial infections. The antibacterial function of UMOD can be eliminated by proteases, as the UMOD branch is susceptible to proteolytic activity.
View Article and Find Full Text PDFSci Adv
June 2025
Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA.
As antimicrobial resistance increases, urinary tract infections (UTIs) are expected to pose an increased burden in morbidity and expense on the health care system, increasing the need for alternative antibiotic-sparing treatments. Most UTIs are caused by uropathogenic (UPEC), whereas causes a large portion of non-UPEC UTIs. Both bacteria express type 1 pili tipped with the mannose-binding FimH adhesin critical for UTI pathogenesis.
View Article and Find Full Text PDFACS Med Chem Lett
October 2024
State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.
Synthesizing FimH antagonists is challenging because of their densely functionalized and stereochemically complex -mannoside structures, resulting in low yields and lengthy processes. We present an efficient method for synthesizing -mannoside FimH antagonists by nickel-catalyzed reductive coupling and stereocontrolled reduction, thereby significantly simplifying the process and enabling the synthesis of FimH antagonists in just four steps with an overall yield of 34-50%. This efficient synthesis holds significant potential for the rapid development of analogues targeting the treatment of urinary tract infections or Crohn's disease caused by ().
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2024
Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110.
is an important pathogen causing difficult-to-treat urinary tract infections (UTIs). Over 1.5 million women per year suffer from recurrent UTI, reducing quality of life and causing substantial morbidity and mortality, especially in the hospital setting.
View Article and Find Full Text PDF