Recent Advances in Search of Bioactive Secondary Metabolites from Fungi Triggered by Chemical Epigenetic Modifiers.

J Fungi (Basel)

State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genomic analysis has demonstrated that many fungi possess essential gene clusters for the production of previously unobserved secondary metabolites; however, these genes are normally reduced or silenced under most conditions. These cryptic biosynthetic gene clusters have become treasures of new bioactive secondary metabolites. The induction of these biosynthetic gene clusters under stress or special conditions can improve the titers of known compounds or the production of novel compounds. Among the inducing strategies, chemical-epigenetic regulation is considered a powerful approach, and it uses small-molecule epigenetic modifiers, which mainly act as the inhibitors of DNA methyltransferase, histone deacetylase, and histone acetyltransferase, to promote changes in the structure of DNA, histones, and proteasomes and to further activate cryptic biosynthetic gene clusters for the production of a wide variety of bioactive secondary metabolites. These epigenetic modifiers mainly include 5-azacytidine, suberoylanilide hydroxamic acid, suberoyl bishydroxamic acid, sodium butyrate, and nicotinamide. This review gives an overview on the method of chemical epigenetic modifiers to trigger silent or low-expressed biosynthetic pathways to yield bioactive natural products through external cues of fungi, mainly based on the research progress in the period from 2007 to 2022. The production of about 540 fungal secondary metabolites was found to be induced or enhanced by chemical epigenetic modifiers. Some of them exhibited significant biological activities such as cytotoxic, antimicrobial, anti-inflammatory, and antioxidant activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961798PMC
http://dx.doi.org/10.3390/jof9020172DOI Listing

Publication Analysis

Top Keywords

secondary metabolites
20
epigenetic modifiers
20
gene clusters
16
bioactive secondary
12
chemical epigenetic
12
biosynthetic gene
12
clusters production
8
cryptic biosynthetic
8
secondary
5
metabolites
5

Similar Publications

Phytophthora root rot caused by the hemibiotrophic oomycete, is a major biotic hindrance in meeting the ever-increasing demand for avocados. In addition, the pathogen is a global menace to agriculture, horticulture and forestry. Phosphite trunk injections and foliar sprays remain the most effective chemical management strategy used in commercial avocado orchards against the pathogen.

View Article and Find Full Text PDF

Bioactive Furan Derivatives from Streptomyces sp. VITGV100: Insights from in silico Docking and ADMET Profiling.

Curr Drug Discov Technol

September 2025

School of BioSciences and Technology, Vellore Institute of Technology, VIT University, Vellore, Tamil Nadu, India.

Introduction: Streptomyces species have complex genomes, including various biosynthetic gene clusters, frequently responsible for producing antibacterial and bioactive secondary metabolites under certain environmental conditions. To assess the impact of Magnesium and Iron on Streptomyces sp. VITGV100 secondary metabolite production and bioactivity, including molecular docking studies to predict their therapeutic potential.

View Article and Find Full Text PDF

Selenium and boron can alleviate lead (Pb) toxicity in plants, but their stress resistance mechanisms in tobacco remain unclear. The aim of this study was to investigate the effects of Se/B application on lead-induced oxidative stress, subcellular distribution, cell wall properties, and Pb accumulation. Additionally, a comprehensive analysis of transcriptomics and metabolomics data was conducted.

View Article and Find Full Text PDF

Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.

View Article and Find Full Text PDF

Suaeda salsa(S.salsa) is a promising halophytic species for vegetation restoration in highly saline-alkali soils. Carboxylated single-walled carbon nanotubes (COOH-SWCNTs) have emerged as potential agents for modulating plant responses to abiotic stress.

View Article and Find Full Text PDF