98%
921
2 minutes
20
represents a distinctive Orchidaceae plant that is more tolerant than other terrestrial orchids. Studies have shown that many members of the MYB transcription factor (TF) family, especially the R2R3-MYB subfamily, are responsive to drought stress. This study identified 103 ; phylogenetic analysis classified these genes into 22 subgroups with . Structural analysis showed that most genes contained the same motifs, three exons and two introns, and showed a helix-turn-helix 3D structure in each R repeat. However, the members of subgroup 22 contained only one exon and no intron. Collinear analysis revealed that had more orthologous R2R3-MYB genes with wheat than and rice. ratios indicated that most genes were under purifying negative selection pressure. -acting elements analysis revealed that drought-related elements were mainly focused on subgroups 4, 8, 18, 20, 21, and 22, and (S20) contained the most. The transcriptome analysis results showed that expression patterns of most genes were upregulated in leaves in response to slight drought stress and downregulated in roots. Among them, members in S8 and S20 significantly responded to drought stress in . In addition, S14 and S17 also participated in these responses, and nine genes were selected for the real-time reverse transcription quantitative PCR (RT-qPCR) experiment. The results were roughly consistent with the transcriptome. Our results, thus, provide an important contribution to understanding the role of in stress-related metabolic processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959677 | PMC |
http://dx.doi.org/10.3390/ijms24043235 | DOI Listing |
Biotechnol J
September 2025
Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.
CRISPR technologies are rapidly transforming agriculture by enabling precise and programmable modifications across a wide range of organisms. This review provides an overview of CRISPR applications in crops, livestock, aquaculture, and microbial systems, highlighting key advances in sustainable agriculture. In crops, CRISPR has accelerated the improvement of traits such as drought tolerance, nutrient efficiency, and pathogen resistance.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
Drought stress dynamically reprograms specialised metabolism in medicinal plants. However, the transcriptional regulatory modules governing stress-adaptive metabolite synthesis remain poorly characterised. Here, we identified SbMYB8 as a drought-responsive transcription factor showing nuclear localisation and dose-dependent induction under drought in Scutellaria baicalensis.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Faculty of Bioscience Engineering, Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Ghent, Belgium.
Plant water potential is one of the most frequently measured variables of plant water status. Stem water potential, often approximated by wrapping the leaves, is assumed to be more stable and a better measure of drought stress than leaf water potential. In wheat (Triticum aestivum L.
View Article and Find Full Text PDFNaturwissenschaften
September 2025
Colorado Water Center, Colorado State University, Fort Collins, CO, 80523, USA.
Drought stress is the most vulnerable abiotic factor affecting plant growth and yield. The use of silicic acid as seed priming treatment is emerging as an effective approach to regulate maize plants susceptibility to water stress. The study was formulated for investigating the effect of silicic acid seed priming treatment in modulating the oxidative defense and key physio-biochemical attributes of maize plants under drought stress conditions.
View Article and Find Full Text PDFPlant Cell Physiol
September 2025
Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, ROC.
Water deficit stress causes devastating loss of crop yield worldwide. Improving crop drought resistance has become an urgent issue. Here we report that a group of abscisic acid (ABA)/drought stress-induced monocot-specific, intrinsically disordered, and highly proline-rich proteins, REPETITIVE PROLINE-RICH PROTEINS (RePRPs), play pivotal roles in drought resistance in rice seedlings.
View Article and Find Full Text PDF