Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MicroRNAs (miRNAs), as small regulatory RNA molecules, are involved in gene expression at the post-transcriptional level. Hence, miRNAs contribute to gene regulation of various steps of different cell subsets' differentiation, maturation, and activation. The adaptive immune system arm, which exhibits the most specific immune responses, is also modulated by miRNAs. The generation and maturation of various T-cell subsets concomitant with B-cells is under precise regulation of miRNAs which function directly on the hallmark genes of each cell subset or indirectly through regulation of signaling pathway mediators and/or transcription factors involved in this maturation journey. In this review, we first discussed the origination process of common lymphocyte progenitors from hematopoietic stem cells, which further differentiate into various T-cell subsets under strict regulation of miRNAs and transcription factors. Subsequently, the differentiation of B-cells from common lymphocyte progenitors in bone marrow and periphery were discussed in association with a network of miRNAs and transcription factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953855PMC
http://dx.doi.org/10.3390/cells12040635DOI Listing

Publication Analysis

Top Keywords

transcription factors
12
adaptive immune
8
immune system
8
t-cell subsets
8
regulation mirnas
8
common lymphocyte
8
lymphocyte progenitors
8
mirnas transcription
8
mirnas
6
crosstalk transcriptional
4

Similar Publications

Background: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. The tumor microenvironment (TME), particularly the interactions between endothelial cells and cancer-associated fibroblasts (CAFs), plays a pivotal role in promoting tumor growth, angiogenesis, oxidative stress, and therapy resistance. The HUVEC-fibroblast co-culture model closely mimics stromal-endothelial interactions observed in CRC, enabling mechanistic insights not achievable in monocultures.

View Article and Find Full Text PDF

Mechanistic analysis of lignocellulosic biomass saccharification by the filamentous fungus Talaromyces cellulolyticus.

Biosci Biotechnol Biochem

September 2025

Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.

Lignocellulosic biomass is a carbon-neutral resource crucial to advancing a bio-based economy. The filamentous fungus Talaromyces cellulolyticus demonstrates superior biomass saccharification efficiency compared to conventional enzyme-producing fungi, making it a promising host for enzymatic biomass conversion. To enable molecular studies, we developed a robust genetic transformation system for T.

View Article and Find Full Text PDF

Age-related cataract (ARC) represents a major global cause of visual impairment, with ultraviolet B (UVB) radiation recognized as a primary contributor to oxidative damage in the lens. FOXO3, a key regulator of aging, apoptosis, and oxidative stress-induced cell death, was investigated for its role and regulatory mechanisms in UVB-induced oxidative stress using human lens epithelial cells (HLECs). A progressive decrease in FOXO3 protein expression was observed in the lens capsules across various stages of cataract progression, as well as in UVB-exposed animal models and UVB-treated HLECs.

View Article and Find Full Text PDF

EZH2 variants derived from cryptic splice sites govern distinct epigenetic patterns during embryonic development.

Nucleic Acids Res

September 2025

Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China.

EZH2 catalyzes H3K27me3 and is essential for embryonic development. Although multiple EZH2 variants have been identified, the functional implications and physiological significance of its heterogeneity remain unclear. Here, we revealed that conserved cryptic splice sites generated two EZH2 variants with (EZH2A) or without (EZH2B) a 27-nt region, coding for a 9-aa segment.

View Article and Find Full Text PDF

Nucleosome repositioning is essential for establishing nucleosome-depleted regions to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogeneously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome-positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.

View Article and Find Full Text PDF