98%
921
2 minutes
20
Marine-origin polysaccharides, in particular cationic and anionic ones, have been widely explored as building blocks in fully natural or hybrid electrostatic-driven Layer-by-Layer (LbL) assemblies for bioapplications. However, the low chemical versatility imparted by neutral polysaccharides has been limiting their assembly into LbL biodevices, despite their wide availability in sources such as the marine environment, easy functionality, and very appealing features for addressing multiple biomedical and biotechnological applications. In this work, we report the chemical functionalization of laminarin (LAM) and pullulan (PUL) marine polysaccharides with peptides bearing either six lysine (K) or aspartic acid (D) amino acids via Cu(I)-catalyzed azide-alkyne cycloaddition to synthesize positively and negatively charged polysaccharide-peptide conjugates. The successful conjugation of the peptides into the polysaccharide's backbone was confirmed by proton nuclear magnetic resonance and attenuated total reflectance Fourier-transform infrared spectroscopy, and the positive and negative charges of the LAM-K/PUL-K and LAM-D/PUL-D conjugates, respectively, were assessed by zeta-potential measurements. The electrostatic-driven LbL build-up of either the LAM-D/LAM-K or PUL-D/PUL-K multilayered thin film was monitored in situ by quartz crystal microbalance with dissipation monitoring, revealing the successful multilayered film growth and the enhanced stability of the PUL-based film. The construction of the PUL-peptide multilayered thin film was also assessed by scanning electron microscopy and its biocompatibility was demonstrated in vitro towards L929 mouse fibroblasts. The herein proposed approach could enable the inclusion of virtually any kind of small molecules in the multilayered assemblies, including bioactive moieties, and be translated into more convoluted structures of any size and geometry, thus extending the usefulness of neutral polysaccharides and opening new avenues in the biomedical field, including in controlled drug/therapeutics delivery, tissue engineering, and regenerative medicine strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964173 | PMC |
http://dx.doi.org/10.3390/md21020092 | DOI Listing |
Mar Environ Res
September 2025
College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China. Electronic address:
This review examines the chemical and ecological interactions between filter-feeding mussels and the green macroalga Ulva prolifera in integrated multi-trophic aquaculture (IMTA) systems. Mussels are crucial for nutrient recycling, as they filter water and release bioavailable compounds such as ammonium (NH), urea (CO(NH)), and dissolved organic matter (DOM). These compounds promote Ulva growth and enhance microbial activity.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
September 2025
Abyss Ingredients, Caudan, France.
The development of functional materials for osteoporosis is essential for effective bone remodeling. In this context, the extraction of biocompatible implantable biomaterials from bio-waste emerges as a valuable strategy, addressing both environmental challenges and promoting human health. The objective of this work was to evaluate the physicochemical properties of the added-value by-product biomaterial (SS-90), extracted from sardine scales (Sardina Pilchardus) and combined with chitosan (SS-90-CH).
View Article and Find Full Text PDFFood Res Int
November 2025
Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China. Electronic address:
This study employed high-pressure microfluidization (HPM) to facilitate the Maillard reaction between quinoa protein (QP) and dextran (DX), systematically examining the effects of various pressures on the conjugate's physicochemical properties. Fourier transform infrared spectroscopy confirmed the formation of QP-DX conjugates, characterized by a new peak at 1149 cm (covalent CN bond). Secondary and tertiary structure analyses revealed that HPM-assisted Maillard reaction partially unfolded QP molecules, enhancing conformational flexibility and interfacial properties.
View Article and Find Full Text PDFFood Res Int
November 2025
State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Rese
Anthocyanins (AC) are natural bioactive substances with the excellent antioxidant properties, but its structure is susceptible to the external environmental factors with inevitably decreased bioavailability. In this work, γ-cyclodextrin based metal-organic framework (CD-MOF) shows high encapsulation efficiency (96.09 %) and satisfiable loading amount (24.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 220005, China. Electronic address:
Patients with diabetics usually exhibit disordered glucose and lipid metabolism, as well as disrupted intestinal microecology. Dietary adjustment is essential for controlling diabetes. This study evaluated the ameliorative effects of psyllium-derived medium-molecular-weight arabinoxylan (MMW-AX) on glycolipid biochemical indicators, pathological symptoms, and intestinal microbial diversity in mice with Type 2 diabetes mellitus (T2DM).
View Article and Find Full Text PDF