Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spinal cord injury (SCI) leads to devastating physical consequences, such as severe sensorimotor dysfunction even lifetime disability, by damaging the corticospinal system. The conventional opinion that SCI is intractable due to the poor regeneration of neurons in the adult central nervous system (CNS) needs to be revisited as the CNS is capable of considerable plasticity, which underlie recovery from neural injury. Substantial spontaneous neuroplasticity has been demonstrated in the corticospinal motor circuitry following SCI. Some of these plastic changes appear to be beneficial while others are detrimental toward locomotor function recovery after SCI. The beneficial corticospinal plasticity in the spared corticospinal circuits can be harnessed therapeutically by multiple contemporary neuromodulatory approaches, especially the electrical stimulation-based modalities, in an activity-dependent manner to improve functional outcomes in post-SCI rehabilitation. Silent synapse generation and unsilencing contribute to profound neuroplasticity that is implicated in a variety of neurological disorders, thus they may be involved in the corticospinal motor circuit neuroplasticity following SCI. Exploring the underlying mechanisms of silent synapse-mediated neuroplasticity in the corticospinal motor circuitry that may be exploited by neuromodulation will inform a novel direction for optimizing therapeutic repair strategies and rehabilitative interventions in SCI patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941655PMC
http://dx.doi.org/10.1016/j.ibneur.2022.08.005DOI Listing

Publication Analysis

Top Keywords

corticospinal motor
12
circuit neuroplasticity
8
spinal cord
8
cord injury
8
motor circuitry
8
corticospinal
7
sci
6
neuroplasticity
5
corticospinal circuit
4
neuroplasticity involve
4

Similar Publications

Purpose: Resection of glioblastomas infiltrating the motor cortex and corticospinal tract (CST) is often linked to increased perioperative morbidity. Navigated transcranial magnetic stimulation (nTMS) motor mapping has been advocated to increase patient safety in these cases. The additional impact of patient frailty on overall outcome after resection of cases with increased risk for postoperative motor deficits as identified with nTMS needs to be investigated.

View Article and Find Full Text PDF

Introduction: We aimed to clarify the effects of an active touch intervention using different textures on corticospinal excitability.

Methods: A total of 30 healthy individuals participated in the active touch intervention. Two tactile stimuli were used for intervention: smooth (silk) and rough (hessian) stimuli.

View Article and Find Full Text PDF

Introduction: Absence of language development is a condition encountered across a large range of neurodevelopmental disorders, including a significant proportion of children with autism spectrum disorder. The neurobiological underpinnings of non-verbal ASD (nvASD) remain poorly understood.

Methods: This study employed multimodal MRI to investigate white matter (WM) microstructural abnormalities in nvASD, focusing on language-related pathways.

View Article and Find Full Text PDF

Complexity of neural outputs elicited by transcranial magnetic stimulation.

J Neurophysiol

September 2025

Defitech Chair of Clinical Neuroengineering, Neuro X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland.

Complex neural activity of the motor cortex is posited to serve as the foundation for a large repertoire of activation patterns crucial for executing movements. As transcranial magnetic stimulation (TMS) predominantly activates monosynaptic fast-conducting corticospinal projections, which are involved in dexterous movement control, complexity of neural outputs elicited by TMS may reflect an underlying repertoire of activation patterns crucial for executing dexterous movements. We proposed to quantify dimensionality of multi-muscle motor-evoked potentials (MEPs) through dimensionality reduction as an integrated measure to reflect complexity of neural outputs elicited by TMS.

View Article and Find Full Text PDF

The uncrossed corticospinal tract (CST) has garnered interest as a potential compensatory neural pathway for recovering motor function after stroke-induced damage to the crossed CST. However, the area of origin of the uncrossed CST in humans remain unclear. This study aimed to identify the area of origin of the uncrossed CST in healthy adults via fibre tractography and diffusion-weighted magnetic resonance imaging.

View Article and Find Full Text PDF