A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Improving the upper atmospheric temperature accuracy of the ground-based instrument by eliminating noise ways. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In view of the special properties of the upper atmosphere at the altitude of 80-120 km, a ground-based passive remote sensing instrument ground-based airglow volume emission rate and temperature imaging interferometer (GBAVTII) is built to detect the atmospheric temperature used (0-1) spectral line of night airglow at the altitude of 94 km. In the process of photographing the upper atmosphere airglow with the GBAVTII, the stray light (white noise) such as moonlight, city lights, and starlight will be affected. In this paper, the theoretical expression of denoising is derived based on the rotational line temperature measurement of diatomic (0-1) airglow. Through a slight adjustment of different parameters in the forward equation of the GBAVTII and noise reduction in laboratory flat-field fine calibration, and other denoising methods in the GBAVTII image processing process, the maximum accuracy of the GBAVTII detection of the upper atmospheric temperature is enhanced to 2.4 K. Also, the minimum error of the GBAVTII detecting data with the satellite instrument sounding of atmosphere using broadband emission radiometry is 0.4 K. Thus, the absolute accuracy of the GBAVTII in detecting the upper atmospheric temperature can be improved to ±(0.4-2.4) through the theory and method studied in this paper.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.471204DOI Listing

Publication Analysis

Top Keywords

atmospheric temperature
16
upper atmospheric
12
upper atmosphere
8
accuracy gbavtii
8
gbavtii detecting
8
gbavtii
7
temperature
6
improving upper
4
atmospheric
4
temperature accuracy
4

Similar Publications