Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Patients with persistent pulmonary subsolid nodules have a relatively high incidence of lung adenocarcinoma. Preoperative early diagnosis of invasive pulmonary adenocarcinoma spectrum lesions could help avoid extensive advanced cancer management and overdiagnosis in lung cancer screening programs.

Methods: In total, 260 consecutive patients with persistent subsolid nodules ≤30 mm (n=260) confirmed by surgical pathology were retrospectively investigated from February 2016 to August 2020 at the Kaohsiung Veterans General Hospital. All patients underwent surgical resection within 3 months of the chest CT exam. The study subjects were divided into a training cohort (N=195) and a validation cohort (N=65) at a ratio of 3:1. The purpose of our study was to develop and validate a least absolute shrinkage and selection operator-derived nomogram integrating semantic-radiomic features in differentiating preinvasive and invasive pulmonary adenocarcinoma lesions, and compare its predictive value with clinical-semantic, semantic, and radiologist's performance.

Results: In the training cohort of 195 subsolid nodules, 106 invasive lesions and 89 preinvasive lesions were identified. We developed a least absolute shrinkage and selection operator-derived combined nomogram prediction model based on six predictors (nodular size, CTR, roundness, GLCM_Entropy_log10, HISTO_Entropy_log10, and CONVENTIONAL_Humean) to predict the invasive pulmonary adenocarcinoma lesions. Compared with other predictive models, the least absolute shrinkage and selection operator-derived model showed better diagnostic performance with an area under the curve of 0.957 (95% CI: 0.918 to 0.981) for detecting invasive pulmonary adenocarcinoma lesions with balanced sensitivity (92.45%) and specificity (88.64%). The results of Hosmer-Lemeshow test showed P values of 0.394 and 0.787 in the training and validation cohorts, respectively, indicating good calibration power.

Conclusions: We developed a least absolute shrinkage and selection operator-derived model integrating semantic-radiomic features with good calibration. This nomogram may help physicians to identify invasive pulmonary adenocarcinoma lesions for guidance in personalized medicine and make more informed decisions on managing subsolid nodules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929384PMC
http://dx.doi.org/10.21037/qims-22-308DOI Listing

Publication Analysis

Top Keywords

invasive pulmonary
24
subsolid nodules
20
pulmonary adenocarcinoma
20
absolute shrinkage
16
shrinkage selection
16
selection operator-derived
16
adenocarcinoma lesions
16
semantic-radiomic features
12
predict invasive
8
persistent subsolid
8

Similar Publications

The oncogenic role of NSUN2 in lung adenocarcinoma by stabilizing CCT5 mRNA via a YBX1-dependent m5C modification.

Mol Cell Biochem

September 2025

Department of Laboratory Medicine, The People's Hospital of Zhongjiang, No. 96, Dabei Street, Kaijiang Town, Zhongjiang County, Deyang City, 618100, Sichuan Province, China.

5-methylcytosine (m5C) methylation is a post-transcriptional modification of RNAs, and its dysregulation plays pro-tumorigenic roles in lung adenocarcinoma (LUAD). Here, this study elucidated the mechanism of action of NSUN2, a major m5C methyltransferase, on LUAD progression. mRNA expression was analyzed by quantitative PCR.

View Article and Find Full Text PDF

Objectives: To investigate the antitumor effects of aucubin (AC) in non-small cell lung cancer (NSCLC) and uncover its plausible mechanism against lung cancer stem-like cells (LCSCs).

Methods: In vitro experiments included MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a reagent commonly used for cell viability assay) and colony formation assays to assess anti-proliferative effects on A549 and NCI-H1975 lung cancer cell lines, wound healing and Transwell invasion assays to evaluate inhibition of cell migration and invasion, tumorsphere-formation experiments to detect changes in NSCLC cell stemness, as well as Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses to measure the expression of LCSC markers (CD44, CD133, Oct4, and Nanog). In vivo experiments were conducted to observe the impact of AC on NSCLC metastasis and mouse survival rates.

View Article and Find Full Text PDF

Non-invasive prediction of invasive lung adenocarcinoma and high-risk histopathological characteristics in resectable early-stage adenocarcinoma by [18F]FDG PET/CT radiomics-based machine learning models: a prospective cohort Study.

Int J Surg

September 2025

Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China

Background: Precise preoperative discrimination of invasive lung adenocarcinoma (IA) from preinvasive lesions (adenocarcinoma in situ [AIS]/minimally invasive adenocarcinoma [MIA]) and prediction of high-risk histopathological features are critical for optimizing resection strategies in early-stage lung adenocarcinoma (LUAD).

Methods: In this multicenter study, 813 LUAD patients (tumors ≤3 cm) formed the training cohort. A total of 1,709 radiomic features were extracted from the PET/CT images.

View Article and Find Full Text PDF

Background: Phrenic nerve injury during mediastinal tumor resection can lead to significant postoperative diaphragmatic dysfunction. Current intraoperative protection techniques are imprecise and lack real-time feedback. We aimed to develop and validate a quantifiable, multimodal neuroprotective strategy.

View Article and Find Full Text PDF