Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cancer cells metabolize glucose through metabolic pathways that differ from those used by healthy and differentiated cells. In particular, tumours have been shown to consume more glucose than their healthy counterparts and to use anaerobic metabolic pathways, even under aerobic conditions. Nevertheless, scientists have still not been able to explain why cancer cells evolved to present an altered metabolism and what evolutionary advantage this might provide them. Experimental and computational models have been increasingly used in recent years to understand some of these biological questions. Multicellular tumour spheroids are effective experimental models as they replicate the initial stages of avascular solid tumour growth. Furthermore, these experiments generate data which can be used to calibrate and validate computational studies that aim to simulate tumour growth. Hybrid models are of particular relevance in this field of research because they model cells as individual agents while also incorporating continuum representations of the substances present in the surrounding microenvironment that may participate in intracellular metabolic networks as concentration or density distributions. Henceforth, in this review, we explore the potential of computational modelling to reveal the role of metabolic reprogramming in tumour growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939553 | PMC |
http://dx.doi.org/10.1016/j.csbj.2023.01.044 | DOI Listing |