Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The lesion boundary of central serous chorioretinopathy (CSCR) is the guarantee to guide the ophthalmologist to accurately arrange the laser spots, so as to enable this ophthalmopathy to be treated precisely. Currently, the accuracy and rapidity of manually locating CSCR lesion boundary in clinic based on single-modal fundus image are limited by imaging quality and ophthalmologist experience, which is also accompanied by poor repeatability, weak reliability and low efficiency. Consequently, a multi-modal fundus image-based lesion boundary auxiliary location method is developed. Firstly, the initial location module (ILM) is employed to achieve the preliminary location of key boundary points of CSCR lesion area on the optical coherence tomography (OCT) B-scan image, then followed by the joint location module (JLM) created based on reinforcement learning for further enhancing the location accuracy. Secondly, the scanning line detection module (SLDM) is constructed to realize the location of lesion scanning line on the scanning laser ophthalmoscope (SLO) image, so as to facilitate the cross-modal mapping of key boundary points. Finally, a simple yet effective lesion boundary location module (LBLM) is designed to assist the automatic cross-modal mapping of key boundary points and enable the final location of lesion boundary. Extensive experiments show that each module can perform well on its corresponding sub task, such as JLM, which makes the correction rate (CR) of ILM increase to 92.11%, comprehensively indicating the effectiveness and feasibility of this method in providing effective lesion boundary guidance for assisting ophthalmologists to precisely arrange the laser spots, and also opening a new research idea for the automatic location of lesion boundary of other fundus diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2023.106648 | DOI Listing |